Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T05:45:43.110Z Has data issue: false hasContentIssue false

On non-singular Markov renewal processes with an application to a growth–catastrophe model

Published online by Cambridge University Press:  14 July 2016

Seppo Niemi*
Affiliation:
University of Helsinki
*
Postal address: Department of Mathematics, University of Helsinki, Hallituskatu 15, 00100 Helsinki 10, Finland.

Abstract

The paper is concerned with Markov renewal processes satisfying a certain non-singularity condition. The relation of this condition to irreducibility, Harris recurrence and regularity of the associated forward Markov process is studied. This enables one to prove limit theorems of a total variation type for Markov renewal processes and semi-regenerative processes by applying Orey's theorem to the forward process. The results are applied to a GI/G/1 queue and a growth-catastrophe population model.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1985 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arjas, E., Nummelin, E. and Tweedie, R. L. (1978) Uniform limit theorems for non-singular renewal and Markov renewal processes. J. Appl. Prob. 15, 112125.Google Scholar
Athreya, K. B., Mcdonald, D. and Ney, P. (1978) Limit theorems for semi-Markov processes and renewal theory for Markov chains. Ann. Prob. 6, 788797.Google Scholar
Athreya, K. B. and Ney, P. (1978) Limit theorems for semi-Markov processes. Bull. Austral. Math. Soc. 19, 283294.CrossRefGoogle Scholar
Berbee, H. C. P. (1979) Random Walks with Stationary Increments and Renewal Theory. Doctoral Thesis, De Vrije University, Amsterdam.Google Scholar
Brockwell, P. J., Gani, J. M. and Resnick, S. I. (1983) Catastrophe processes with continuous state-space. Austral. J. Statist. 25, 208226.Google Scholar
Çinlar, E. (1969) On semi-Markov processes on arbitrary spaces. Proc. Camb. Phil. Soc. 66, 381392.Google Scholar
Çinlar, E. (1975) Introduction to Stochastic Processes. Prentice-Hall, Englewood Cliffs, N.J. Google Scholar
Duflo, M. and Revuz, D. (1969) Propriétés asymptotiques des probabilités de transition des processus de Markov récurrents. Ann. Inst. H. Poincaré B 5, 233244.Google Scholar
Foster, F. G. (1953) On the stochastic matrices associated with certain queueing processes. Ann. Math. Statist. 24, 355360.Google Scholar
Gripenberg, G. (1983) A stationary distribution for the growth of a population subject to random catastrophes. J. Math. Biol. 17, 371379.Google Scholar
Harris, T. E. (1956) The existence of stationary measures for certain Markov processes. Proc. 3rd Berkeley Symp. Math. Statist. Prob. 2, 113124.Google Scholar
Jacod, J. (1971) Théorème de renouvellement et classification pour les chaînes semi-markoviennes. Ann. Inst. H. Poincaré B 7, 83129.Google Scholar
Jacod, J. (1974) Corrections et compléments à l'article: “Théorème de renouvellement et classification pour les chaînes semi-markoviennes”. Ann. Inst. H. Poincaré B 10, 201209.Google Scholar
Kesten, H. (1974) Renewal theory for functionals of a Markov chain with general state space. Ann. Prob. 2, 355386.Google Scholar
Mcdonald, D. (1975) Renewal theorem and Markov chains. Ann. Inst. H. Poincaré B 11, 187197.Google Scholar
Mcdonald, D. (1978a) On semi-Markov and semi-regenerative processes I. Z. Wahrscheinlichkeitsth. 42, 261277.Google Scholar
Mcdonald, D. (1978b) On semi-Markov and semi-regenerative processes II. Ann. Prob. 6, 9951014.Google Scholar
Niemi, S. and Nummelin, E. (1985) On non-singular renewal kernels with an application to a semigroup of transition kernels. In preparation.Google Scholar
Nummelin, E. (1978) Uniform and ratio limit theorems for Markov renewal and semi-regenerative processes on a general state space. Ann. Inst. H. Poincaré B 14, 119143.Google Scholar
Nummelin, E. (1984) General Irreducible Markov Chains and Non-negative Operators. Cambridge Tracts in Mathematics, Cambridge University Press.CrossRefGoogle Scholar
Orey, S. (1971) Lecture Notes on Limit Theorems for Markov Chain Transition Probabilities. Van Nostrand Reinhold, London.Google Scholar
Revuz, D. (1975) Markov Chains. North-Holland, Amsterdam.Google Scholar
Smith, W. (1955) Regenerative stochastic processes. Proc. R. Soc. London A 232, 631.Google Scholar
Tweedie, R. L. (1974) R-theory for Markov chains on a general state space I: Solidarity properties and R -recurrent chains. Ann. Prob. 2, 840864.Google Scholar
Tweedie, R. L. (1976) Criteria for classifying general Markov chains. Adv. Appl. Prob. 8, 737771.Google Scholar