Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T12:02:41.252Z Has data issue: false hasContentIssue false

On a solution of the migration process and the application to a problem in epidemiology

Published online by Cambridge University Press:  14 July 2016

S. Raman*
Affiliation:
University of California, Los Angeles
C. L. Chiang
Affiliation:
University of California, Berkeley
*
*Now at Department of Epidemiology and Community Medicine, University of Ottawa.

Abstract

In this paper we derive a successive method of solution to a general class of models pertaining to the investigation of the migration process. A specific application of the results to a problem arising in a study of the epidemiology of leprosy has been considered. The application to explorative studies in biological modelling using an interactive computing mode has been discussed.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1973 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Research sponsored by N. I. H. Biotechnology Resources Grant RR-3.

References

Bartlett, M. S. (1955) An Introduction to Stochastic Processes. Cambridge University Press.Google Scholar
Chiang, C. L. (1968) Introduction to Stochastic Processes in Biostatistics. John Wiley, New York.Google Scholar
Cochrane, R. G. (1947) A Practical Textbook of Leprosy. Oxford University Press.Google Scholar
Feller, W. (1957) An Introduction to Probability Theory and its Applications. Vol. I. John Wiley, New York.Google Scholar
Harris, T. E. (1963) The Theory of Branching Processes. Springer-Verlag, Berlin.Google Scholar
Pfaltzgraff, R. E. (1966) The classification of Leprosy. Leprosy Review, 38, 1523.Google Scholar
Raman, S. (1967) A mathematical model for evaluating the outcome of different strategies of leprosy control programmes. Leprosy in India 39, No. 3, 128132.Google Scholar
Renshaw, E. (1972) Birth, death and migration processes. Biometrika 59, 4960.Google Scholar