Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T11:06:06.276Z Has data issue: false hasContentIssue false

A note on the GI/M/1 queue with Poisson negative arrivals

Published online by Cambridge University Press:  14 July 2016

Won S. Yang
Affiliation:
Department of Industrial Engineering, KAIST, Taejon-shi 305-701, Korea. Email address: [email protected]
Kyung C. Chae
Affiliation:
Department of Industrial Engineering, KAIST, Taejon-shi 305-701, Korea. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Letters to the Editor
Copyright
Copyright © by the Applied Probability Trust 2001 

References

El-taha, M. and Stidham, S. Jr. (1999). Sample-Path Analysis of Queueing Systems. Kluwer, Boston.Google Scholar
Harrison, P. G., and Pitel, E. (1993). Sojourn times in single server queues with negative customers. J. Appl. Prob. 30, 943963.CrossRefGoogle Scholar
Harrison, P. G., and Pitel, E. (1996). The M/G/1 queue with negative customers. Adv. Appl. Prob. 28, 540566.CrossRefGoogle Scholar
Jain, G., and Sigman, K. (1996). A Pollaczek–Khinchine formula for M/G/1 queues with disasters. J. Appl. Prob. 33, 11911200.CrossRefGoogle Scholar
Takács, E. (1962). Introduction to the Theory of Queues. Oxford University Press.Google Scholar
Wolff, R. W. (1982). Poisson arrivals see time averages. Operat. Res. 30, 223231.CrossRefGoogle Scholar
Wolff, R. W. (1989). Stochastic Modeling and the Theory of Queues. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
Yang, W. S., and Chae, K. C. (1998). The GI/M/1 queue with negative customers. Tech. Rep., Department of Industrial Engineering, KAIST. Available at http://osl7.kaist.ac.kr/lab/papers_e.htm.Google Scholar