Article contents
A Note on a Lower Bound for the Multiplicative Odds Theorem of Optimal Stopping
Published online by Cambridge University Press: 30 January 2018
Abstract
In this note we present a bound of the optimal maximum probability for the multiplicative odds theorem of optimal stopping theory. We deal with an optimal stopping problem that maximizes the probability of stopping on any of the last m successes of a sequence of independent Bernoulli trials of length N, where m and N are predetermined integers satisfying 1 ≤ m < N. This problem is an extension of Bruss' (2000) odds problem. In a previous work, Tamaki (2010) derived an optimal stopping rule. We present a lower bound of the optimal probability. Interestingly, our lower bound is attained using a variation of the well-known secretary problem, which is a special case of the odds problem.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © Applied Probability Trust
References
- 2
- Cited by