Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T05:26:54.817Z Has data issue: false hasContentIssue false

Minimal Clade Size in the Bolthausen-Sznitman Coalescent

Published online by Cambridge University Press:  30 January 2018

Fabian Freund*
Affiliation:
University of Hohenheim
Arno Siri-Jégousse*
Affiliation:
Centro de Investigación en Matemáticas, A.C.
*
Postal address: Crop Plant Biodiversity and Breeding Informatics Group (350b), Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Fruwirthstrasse 21, 70599 Stuttgart, Germany. Email address: [email protected]
∗∗ Postal address: Centro de Investigación en Matemáticas, Calle Jalisco s/n, Col. Mineral de Valenciana, 36240 Guanajuato, Mexico. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In this article we show the asymptotics of distribution and moments of the size Xn of the minimal clade of a randomly chosen individual in a Bolthausen-Sznitman n-coalescent for n → ∞. The Bolthausen-Sznitman n-coalescent is a Markov process taking states in the set of partitions of {1, …, n}, where 1, …, n are referred to as individuals. The minimal clade of an individual is the equivalence class the individual is in at the time of the first coalescence event this individual participates in. We also provide exact formulae for the distribution of Xn. The main tool used is the connection of the Bolthausen-Sznitman n-coalescent with random recursive trees introduced by Goldschmidt and Martin (2005). With it, we show that Xn - 1 is distributed as the size of a uniformly chosen table in a standard Chinese restaurant process with n - 1 customers.

Type
Research Article
Copyright
© Applied Probability Trust 

References

Arratia, R., Barbour, A. D. and Tavaré, S. (2003). Logarithmic Combinatorial Structures: A Probabilistic Approach. European Mathematical Society, Zürich.CrossRefGoogle Scholar
Berestycki, J., Berestycki, N. and Schweinsberg, J. (2013). The genealogy of branching Brownian motion with absorption. Ann. Prob. 41, 527618.CrossRefGoogle Scholar
Bingham, N. H., Goldie, C. M. and Teugels, J. L. (1987). Regular Variation (Encyclopedia Math. Appl. 27). Cambridge University Press.CrossRefGoogle Scholar
Blum, M. G. B. and François, O. (2005). Minimal clade size and external branch length under the neutral coalescent. Adv. Appl. Prob. 37, 647662.CrossRefGoogle Scholar
Bolthausen, E. and Sznitman, A.-S. (1998). On Ruelle's probability cascades and an abstract cavity method. Commun. Math. Phys. 197, 247276.CrossRefGoogle Scholar
Bovier, A. and Kurkova, I. (2007). Much ado about Derrida's GREM. In Spin Glasses (Lecture Notes Math. 1900), Springer, Berlin, pp. 81115.CrossRefGoogle Scholar
Brunet, É. and Derrida, B. (2013). Genealogies in simple models of evolution. J. Statist. Mech. Theory Exp. 2013, P01006.CrossRefGoogle Scholar
Brunet, É., Derrida, B., Mueller, A. H. and Munier, S. (2006). Noisy traveling waves: effect of selection on genealogies. Europhys. Lett. 76, 17.CrossRefGoogle Scholar
Brunet, É., Derrida, B., Mueller, A. H. and Munier, S. (2007). Effect of selection on ancestry: an exactly soluble case and its phenomenological generalization. Phys. Rev. E 76, 041104.CrossRefGoogle ScholarPubMed
Caliebe, A., Neininger, R., Krawczak, M. and Rösler, U. (2007). On the length distribution of external branches in coalescence trees: genetic diversity within species. Theoret. Pop. Biol. 72, 245252.CrossRefGoogle ScholarPubMed
DeLaurentis, J. M. and Pittel, B. G. (1985). Random permutations and Brownian motion. Pacific J. Math. 119, 287301.CrossRefGoogle Scholar
Desai, M. M., Walczak, A. M. and Fisher, D. S. (2013). Genetic diversity and the structure of genealogies in rapidly adapting populations. Genetics 193, 565585.CrossRefGoogle ScholarPubMed
Dhersin, J.-S., Freund, F., Siri-Jégousse, A. and Yuan, L. (2013). On the length of an external branch in the beta-coalescent. Stoch. Process. Appl 123, 16911715.CrossRefGoogle Scholar
Freund, F. and Möhle, M. (2009). On the time back to the most recent common ancestor and the external branch length of the Bolthausen–Sznitman coalescent. Markov Process. Relat. Fields 15, 387416.Google Scholar
Fu, Y. X. and Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics 133, 693709.CrossRefGoogle ScholarPubMed
Gnedin, A., Iksanov, A. and Möhle, M. (2008). On asymptotics of exchangeable coalescents with multiple collisions. J. Appl. Prob. 45, 11861195.CrossRefGoogle Scholar
Goldschmidt, C. and Martin, J. B. (2005). Random recursive trees and the Bolthausen–Sznitman coalescent. Electron. J. Prob. 10, 718745.CrossRefGoogle Scholar
Hansen, J. C. (1990). A functional central limit theorem for the Ewens sampling formula. J. Appl. Prob. 27, 2843.CrossRefGoogle Scholar
Hwang, H.-K. (1995). Asymptotic expansions for the Stirling numbers of the first kind. J. Combin. Theory A 71, 343351.CrossRefGoogle Scholar
Kingman, J. F. C. (1982). The coalescent. Stoch. Process. Appl. 13, 235248.CrossRefGoogle Scholar
Neher, R. and Hallatschek, O. (2013). Genealogies of rapidly adapting populations. Proc. Nat. Acad. Sci. USA 110, 437442.CrossRefGoogle ScholarPubMed
Pitman, J. (1999). Coalescents with multiple collisions. Ann. Prob. 27, 18701902.CrossRefGoogle Scholar
Pitman, J. (2005). Combinatorial Stochastic Processes (Lecture Notes Math. 1875). Springer, Berlin.Google Scholar
Sagitov, S. (1999). The general coalescent with asynchronous mergers of ancestral lines. J. Appl. Prob. 36, 11161125.CrossRefGoogle Scholar