Published online by Cambridge University Press: 14 July 2016
Let n points be distributed independently within a k-dimensional unit cube according to density f. At each point, construct a k-dimensional sphere of content an. Let V denote the vacancy, or ‘volume' not covered by the spheres. We derive asymptotic formulae for the mean and variance of V, as n → ∞and an → 0. The formulae separate naturally into three cases, corresponding to nan → 0, nan → a (0 < a <∞) and nan →∞, respectively. We apply the formulae to derive necessary and sufficient conditions for V/E(V) → 1 in L2.