Article contents
Logarithmic Asymptotics for Multidimensional Extremes Under Nonlinear Scalings
Published online by Cambridge University Press: 30 January 2018
Abstract
Let W = {Wn: n ∈ N} be a sequence of random vectors in Rd, d ≥ 1. In this paper we consider the logarithmic asymptotics of the extremes of W, that is, for any vector q > 0 in Rd, we find that logP(there exists n ∈ N: Wnuq) as u → ∞. We follow the approach of the restricted large deviation principle introduced in Duffy (2003). That is, we assume that, for every q ≥ 0, and some scalings {an}, {vn}, (1 / vn)logP(Wn / an ≥ uq) has a, continuous in q, limit JW(q). We allow the scalings {an} and {vn} to be regularly varying with a positive index. This approach is general enough to incorporate sequences W, such that the probability law of Wn / an satisfies the large deviation principle with continuous, not necessarily convex, rate functions. The equations for these asymptotics are in agreement with the literature.
MSC classification
- Type
- Research Article
- Information
- Copyright
- © Applied Probability Trust
References
- 2
- Cited by