Published online by Cambridge University Press: 14 July 2016
The concept of a learning model (or random system with complete connections) with continuous time parameter is introduced on the basis of the notion of a multivariate point process possessing an intensity. The stepwise transition probabilities in terms of the intensity are derived and a Monte Carlo method for simulating a sample is presented. By modelling the intensity process various types of learning models can be built. We propose a linear learning model which comprises the continuous-time Markov process as well as Hawkes's mutually exciting point process. We study the asymptotic behaviour of this linear model in terms of explosion or extinction and of convergence of some estimates. We close with some numerical results from computer simulations.