Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T05:21:09.131Z Has data issue: false hasContentIssue false

Integrated Fractional white Noise as an Alternative to Multifractional Brownian Motion

Published online by Cambridge University Press:  14 July 2016

Allan Sly*
Affiliation:
University of California
*
Postal address: Department of Statistics, University of California, 367 Evans Hall, Berkeley, CA 94720-3860, USA. Email address: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Multifractional Brownian motion is a Gaussian process which has changing scaling properties generated by varying the local Hölder exponent. We show that multifractional Brownian motion is very sensitive to changes in the selected Hölder exponent and has extreme changes in magnitude. We suggest an alternative stochastic process, called integrated fractional white noise, which retains the important local properties but avoids the undesirable oscillations in magnitude. We also show how the Hölder exponent can be estimated locally from discrete data in this model.

Type
Research Article
Copyright
Copyright © Applied Probability Trust 2007 

References

Anh, V. V., Yu, Z. G., Wanliss, J. A. and Watson, S. M. (2005). Prediction of magnetic storm events using the D_{st} index. Nonlinear Process. Geophys. 12, 799806.Google Scholar
Ayache, A. and Lévy Véhel, J. (2004). On the identification of the pointwise Hölder exponent of the generalized multifractional Brownian motion. Stoch. Process. Appl. 111, 119156.Google Scholar
Ayache, A., Benassi, A., Cohen, S. and Lévy Véhel, J. (2005). Regularity and identification of generalized multifractional Gaussian processes. In Séminaire de Probabilités XXXVIII (Lecture Notes Math. 1857), Springer, Berlin, pp. 290312.Google Scholar
Benassi, A., Cohen, S. and Istas, J. (1998). Identifying the multifractional function of a Gaussian process. Statist. Prob. Lett. 39, 337345.Google Scholar
Benassi, A., Bertrand, P., Cohen, S. and Istas, J. (1999). Identification d'un processus gaussien multifractionnaire avec des ruptures sur la fonction d'échelle. C. R. Acad. Sci. Paris Sér. I Math. 329, 435440.CrossRefGoogle Scholar
Benassi, A., Bertrand, P., Cohen, S. and Istas, J. (2000). Identification of the Hurst index of a step fractional Brownian motion. Statist. Infer. Stoch. Process. 3, 101111.Google Scholar
Carbone, A., Castelli, G. and Stanley, H. E. (2004). Time-dependent Hurst exponent. Physica A 344, 267271.Google Scholar
Chung, K. L. (2001). A Course in Probability Theory. Academic Press, San Diego, CA.Google Scholar
Elliott, R. J. and van der Hoek, J. (2003). A general fractional white noise theory and applications to finance. Math. Finance 13, 301330.Google Scholar
Janson, S. (1997). Gaussian Hilbert Spaces. Cambridge University Press.Google Scholar
Mandelbrot, B. B. and Fisher, A. and Calvet, L. (1997). A multifractal model of asset returns. CFDP 1164. Available at http://cowles.econ.yale.edu/P/cd/dy1997.htm.Google Scholar
Murali Krishna, P., Gadre, V. M. and Desai, V. B. (2003). Multifractal Based Network Traffic Modeling. Kluwer, Boston, MA.Google Scholar
Peltier, R. and Lévy Véhel, J. (1995). Multifractional Brownian motion: definition and preliminary results. Res. Rept. 2645, INRIA.Google Scholar
Sreenivasan, K. R. (1991). Fractals and multifractals in fluid turbulence. Ann. Rev. Fluid Mech. 23, 539600.Google Scholar
Stoev, S. A. and Taqqu, M. S. (2006). How rich is the class of multifractional Brownian motions? Stoch. Process. Appl. 116, 200221.Google Scholar
Watkins, N. W. et al. (2005). Towards synthesis of solar wind and geomagnetic scaling exponents: a fractional Lévy motion model. Space Sci. Rev. 121, 271284.Google Scholar
Yu, Z.-G., Anh, V. and Lau, K.-S. (2003). Multifractal and correlation analyses of protein sequences from complete genomes. Phys. Rev. E 68, 021913.Google Scholar