Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T16:55:52.835Z Has data issue: false hasContentIssue false

Inequalities for random flats meeting a convex body

Published online by Cambridge University Press:  14 July 2016

Rolf Schneider*
Affiliation:
Universität Freiburg I. Br.
*
Postal address: Mathematisches Institut, Albert-Ludwigs-Universität, Albertstrasse 23b, D-7800 Freiburg i. Br., W. Germany.

Abstract

We choose a uniform random point in a given convex body K in n-dimensional Euclidean space and through that point the secant of K with random direction chosen independently and isotropically. Given the volume of K, the expectation of the length of the resulting random secant of K was conjectured by Enns and Ehlers [5] to be maximal if K is a ball. We prove this, and we also treat higher-dimensional sections defined in an analogous way. Next, we consider a finite number of independent isotropic uniform random flats meeting K, and we prove that certain geometric probabilities connected with these again become maximal when K is a ball.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 1985 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Busemann, H. (1958) Convex Surfaces. Interscience, New York.Google Scholar
[2] Carleman, T. (1919) Über eine isoperimetrische Aufgabe und ihre physikalischen Anwendungen. Math. Z. 3, 17.Google Scholar
[3] Coleman, R. (1969) Random paths through convex bodies. J. Appl. Prob. 6, 430441.CrossRefGoogle Scholar
[4] Davy, P. and Miles, R. E. (1977) Sampling theory for opaque spatial specimens. J. R. Statist. Soc. B 39, 5665.Google Scholar
[5] Enns, E. G. and Ehlers, P. F. (1978) Random paths through a convex region. J. Appl. Prob. 15, 144152.CrossRefGoogle Scholar
[6] Groemer, H. (1973) On some mean values associated with a randomly selected simplex in a convex set. Pacific J. Math. 45, 525533.CrossRefGoogle Scholar
[7] Kingman, J. F. C. (1965) Mean free paths in a convex reflecting region. J. Appl. Prob. 2, 162168.Google Scholar
[8] Kingman, J. F. C. (1969) Random secants of a convex body. J. Appl. Prob. 6, 660672.Google Scholar
[9] Knothe, H. (1937) Über Ungleichungen bei Sehnenpotenzintegralen. Deutsche Math. 2, 544551.Google Scholar
[10] Miles, R.E. (1969) Poisson flats in Euclidean spaces, Part I: A finite number of random uniform flats. Adv. Appl. Prob. 1, 211237.Google Scholar
[11] Miles, R. E. (1971) Isotropic random simplices. Adv. Appl. Prob. 3, 353382.Google Scholar
[12] Miles, R. E. and Davy, P. (1976) Precise and general conditions for the validity of a comprehensive set of stereological fundamental formulae. J. Microscopy 107, 211226.Google Scholar
[13] Petkantschin, B. (1936) Integralgeometrie 6. Zusammenhänge zwischen den Dichten der linearen Unterräume im n-dimensionalen Raum. Abh. Math. Sem. Univ. Hamburg 11, 249310.Google Scholar
[14] Pfiefer, R. E. (1982) The Extrema of Geometric Mean Values. , University of California, Davis.Google Scholar
[15] Santaló, L. A. (1976) Integral Geometry and Geometric Probability. Addison-Wesley, Reading, Mass.Google Scholar
[16] Schneider, R. (1982) Random hyperplanes meeting a convex body. Z. Wahrscheinlichkeitsth. 61, 379387.Google Scholar