Article contents
Implicit renewal theory in the arithmetic case
Published online by Cambridge University Press: 15 September 2017
Abstract
We extend Goldie's implicit renewal theorem to the arithmetic case, which allows us to determine the tail behavior of the solution of various random fixed point equations. It turns out that the arithmetic and nonarithmetic cases are very different. Under appropriate conditions we obtain that the tail of the solution X of the fixed point equations X =DAX + B and X =DAX ∨ B is ℓ(x) q(x) x-κ, where q is a logarithmically periodic function q(x eh) = q(x), x > 0, with h being the span of the arithmetic distribution of log A, and ℓ is a slowly varying function. In particular, the tail is not necessarily regularly varying. We use the renewal theoretic approach developed by Grincevičius (1975) and Goldie (1991).
Keywords
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 2017
References
- 5
- Cited by