Article contents
The hit-and-run version of top-to-random
Published online by Cambridge University Press: 12 July 2022
Abstract
We study an example of a hit-and-run random walk on the symmetric group $\mathbf S_n$ . Our starting point is the well-understood top-to-random shuffle. In the hit-and-run version, at each single step, after picking the point of insertion j uniformly at random in $\{1,\ldots,n\}$ , the top card is inserted in the jth position k times in a row, where k is uniform in $\{0,1,\ldots,j-1\}$ . The question is, does this accelerate mixing significantly or not? We show that, in $L^2$ and sup-norm, this accelerates mixing at most by a constant factor (independent of n). Analyzing this problem in total variation is an interesting open question. We show that, in general, hit-and-run random walks on finite groups have non-negative spectrum.
- Type
- Original Article
- Information
- Copyright
- © The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust
References
- 1
- Cited by