Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-21T23:05:49.119Z Has data issue: false hasContentIssue false

Gerber–Shiu distribution at Parisian ruin for Lévy insurance risk processes

Published online by Cambridge University Press:  21 June 2016

Erik J. Baurdoux*
Affiliation:
London School of Economics
Juan Carlos Pardo*
Affiliation:
Centro de Investigación en Matemáticas
José Luis Pérez*
Affiliation:
Universidad Nacional Autónoma de Mèxico
Jean-François Renaud*
Affiliation:
Université du Québec à Montréal (UQAM)
*
* Postal address: Department of Statistics, London School of Economics, Houghton Street, London WC2A 2AE, UK. Email address: [email protected]
** Postal address: Centro de Investigación en Matemáticas, A.C. Calle Jalisco s/n, C.P. 36240, Guanajuato, Mexico. Email address: [email protected]
*** Postal address: Department of Probability and Statistics, IIMAS, UNAM, C.P. 04510, Mexico, D.F., Mexico. Email address: [email protected]
**** Postal address: Département de Mathématiques, Université du Québec à Montréal, 201 av. Président-Kennedy, Montréal, Québec, H2X 3Y7, Canada. Email address: [email protected]

Abstract

Inspired by the works of Landriault et al. (2011), (2014), we study the Gerber–Shiu distribution at Parisian ruin with exponential implementation delays for a spectrally negative Lévy insurance risk process. To be more specific, we study the so-called Gerber–Shiu distribution for a ruin model where at each time the surplus process goes negative, an independent exponential clock is started. If the clock rings before the surplus becomes positive again then the insurance company is ruined. Our methodology uses excursion theory for spectrally negative Lévy processes and relies on the theory of so-called scale functions. In particular, we extend the recent results of Landriault et al. (2011), (2014).

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Albrecher, H., Ivanovs, J. and Zhou, X. (2016).Exit identities for Lévy processes observed at Poisson arrival times.Bernoulli 22, 13641382.Google Scholar
[2]Bertoin, J. (1996).Lévy Processes.Cambridge University Press.Google Scholar
[3]Biffis, E. and Kyprianou, A. E. (2010).A note on scale functions and time value of ruin for Lévy insurance risk processes.Insurance Math. Econom. 46, 8591.CrossRefGoogle Scholar
[4]Chesney, M., Jeanblanc-Picqué, M. and Yor, M. (1997).Brownian excursions and Parisian barrier options.Adv. Appl. Prob. 29, 165184.Google Scholar
[5]Czarna, I. (2016).Parisian ruin probability with a lower ultimate bankrupt barrier.Scand. Actuarial J. 2016, 319337.Google Scholar
[6]Czarna, I. and Palmowski, Z. (2011).Ruin probability with Parisian delay for a spectrally negative Lévy risk process.J. Appl. Prob. 48, 9841002.Google Scholar
[7]Dassios, A. and Wu, S. (2008).Parisian ruin with exponential claims. Unpublished manuscript.Google Scholar
[8]Gerber, H. U. and Shiu, E. S. W. (1997).The joint distribution of the time of ruin, the surplus immediately before ruin, and the deficit at ruin.Insurance Math. Econom. 21, 129137.Google Scholar
[9]Gerber, H. U. and Shiu, E. S. W. (1998).On the time value of ruin.N. Amer. Actuarial J. 2, 4878.Google Scholar
[10]Kyprianou, A. E. (2014).Fluctuations of Lévy Processes with Applications, 2nd edn.Springer, Heidelberg.Google Scholar
[11]Landriault, D., Renaud, J.-F. and Zhou, X. (2011).Occupation times of spectrally negative Lévy processes with applications.Stoch. Process. Appl. 121, 26292641.CrossRefGoogle Scholar
[12]Landriault, D., Renaud, J.-F. and Zhou, X. (2014).An insurance risk model with Parisian implementation delays.Methodol. Comput. Appl. Prob. 16, 583607.Google Scholar
[13]Loeffen, R., Czarna, I. and Palmowski, Z. (2013).Parisian ruin probability for spectrally negative Lévy processes.Bernoulli 19, 599609.Google Scholar
[14]Loeffen, R. L., Renaud, J.-F. and Zhou, X. (2014).Occupation times of intervals until first passage times for spectrally negative Lévy processes.Stoch. Process. Appl. 124, 14081435.Google Scholar