Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T11:16:58.906Z Has data issue: false hasContentIssue false

Expected measure of the union of random rectangles

Published online by Cambridge University Press:  14 July 2016

Chern-Ching Chao*
Affiliation:
Academia Sinica
Hsien-Kuei Hwang*
Affiliation:
Academia Sinica
Wen-Qi Liang*
Affiliation:
Academia Sinica
*
Postal address: Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan.
Postal address: Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan.
Postal address: Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan.

Abstract

An asymptotic expression for the expected area of the union of n random rectangles is derived by Mellin transforms, where their two diagonal corners are independently and uniformly distributed over (0,1)2. The general result for d-dimensional hyper-rectangles is also stated.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 1998 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Buchta, C. (1989). On the average number of maxima in a set of vectors. Inform. Process. Lett. 33, 6365.CrossRefGoogle Scholar
Buchta, C., Müller, J., and Tichy, R.F. (1985). Stochastic approximation of convex bodies. Math. Ann. 271, 225235.CrossRefGoogle Scholar
Efron, B. (1965). The convex hull of a random set of points. Biometrika 52, 331343.CrossRefGoogle Scholar
Erdélyi, A. (1985). Higher Transcendental Functions, Volume I. Robert E. Krieger Publishing Company, Malabar, Florida. Original edition, 1953.Google Scholar
Feller, W. (1971). An Introduction to Probability Theory and its Applications, Volume II. John Wiley & Sons, New York.Google Scholar
Flajolet, P., and Sedgewick, R. (1995). Mellin transforms and asymptotics: finite differences and Rice's integrals. Theoret. Comput. Sci. 144, 101124.CrossRefGoogle Scholar
Groeneboom, P. (1988). Limit theorems for convex hulls. Prob. Theory Rel. Fields 79, 327368.CrossRefGoogle Scholar
Hsing, T. (1994). On the asymptotic distribution of the area outside a random convex hull in a disk. Ann. Appl. Prob. 4, 478493.CrossRefGoogle Scholar
Klee, V. (1977). Can the measure of ∪[ai,bi ] be computed in less than O(n log n) steps. Amer. Math. Monthly 84, 284285.Google Scholar
Mead, C., and Conway, L. (1980). Introduction to VLSI-systems. Addison-Wesley, Reading, Mass.Google Scholar
Mehlhorn, K. (1984). Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry. Springer-Verlag, Berlin, New York.CrossRefGoogle Scholar
Preparata, F.P., and Shamos, M.I. (1985). Computational Geometry: An Introduction. Springer-Verlag, New York.CrossRefGoogle Scholar
Raynaud, H. (1970). Sur l'enveloppe convexe des nuages de point aléatoires dans R n . I. J. Appl. Prob. 7, 3548.Google Scholar
Rényi, A., and Sulanke, R. (1963). Über die konvexe Hulle von n zufallig gewahlten Punkten. I. Z. Wahrscheinlichkeitsth. 2, 7584.CrossRefGoogle Scholar
Rényi, A., and Sulanke, R. (1964). Über die konvexe Hulle von n zufallig gewahlten Punkten. II. Z. Wahrscheinlichkeitsth. 3, 138148.CrossRefGoogle Scholar