Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T03:33:13.255Z Has data issue: false hasContentIssue false

Existence of Gibbs point processes with stable infinite range interaction

Published online by Cambridge University Press:  04 September 2020

David Dereudre*
Affiliation:
Université de Lille
Thibaut Vasseur*
Affiliation:
Université de Lille
*
*Postal address: Université de Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France. Email address: [email protected]
*Postal address: Université de Lille, CNRS, UMR 8524 - Laboratoire Paul Painlevé, F-59000 Lille, France. Email address: [email protected]

Abstract

We provide a new proof of the existence of Gibbs point processes with infinite range interactions, based on the compactness of entropy levels. Our main existence theorem holds under two assumptions. The first one is the standard stability assumption, which means that the energy of any finite configuration is superlinear with respect to the number of points. The second assumption is the so-called intensity regularity, which controls the long range of the interaction via the intensity of the process. This assumption is new and introduced here since it is well adapted to the entropy approach. As a corollary of our main result we improve the existence results by Ruelle (1970) for pairwise interactions by relaxing the superstabilty assumption. Note that our setting is not reduced to pairwise interaction and can contain infinite-range multi-body counterparts.

Type
Research Papers
Copyright
© Applied Probability Trust 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baddeley, A. J. and Van Lieshout, M. (1995). Area-interaction point processes. Ann. Inst. Statist. Math. 47, 601619.10.1007/BF01856536CrossRefGoogle Scholar
Belitsky, V. and Pechersky, E. (2002). Uniqueness of Gibbs state for non-ideal gas in $\mathbb R^d$ : the case of multibody interaction. J. Statist. Phys. 106, 931955.10.1023/A:1014029602226CrossRefGoogle Scholar
Dereudre, D. (2009). The existence of Quermass-interaction processes for nonlocally stable interaction and nonbounded convex grains. Adv. Appl. Prob. 41, 664681.CrossRefGoogle Scholar
Dereudre, D. (2019). Introduction to the theory of Gibbs point processes. In Stochastic Geometry. Springer, New York, pp. 181229.10.1007/978-3-030-13547-8_5CrossRefGoogle Scholar
Dereudre, D., Drouilhet, R. and Georgii, H.-O. (2012). Existence of Gibbsian point processes with geometry-dependent interactions. Prob. Theory Relat. Fields 153, 643670.10.1007/s00440-011-0356-5CrossRefGoogle Scholar
Dereudre, D. and Houdebert, P. (2015). Infinite volume continuum random cluster model. Electron. J. Prob. 20, 125.10.1214/EJP.v20-4718CrossRefGoogle Scholar
Georgii, H.-O. (2011). Gibbs Measures and Phase Transitions, Vol. 9. de Gruyter, Berlin.10.1515/9783110250329CrossRefGoogle Scholar
Georgii, H.-O. and Häggström, O. (1996). Phase transition in continuum Potts models. Commun. Math. Phys. 181, 507528.CrossRefGoogle Scholar
Georgii, H.-O. and Zessin, H. (1993). Large deviations and the maximum entropy principle for marked point random fields. Prob. Theory Relat. Fields 96, 177204.10.1007/BF01192132CrossRefGoogle Scholar
Kondratiev, Y., Kutoviy, O. and Pechersky, E. (2004). Existence of Gibbs state for a non-ideal gas in $\mathbb{R}^d$ : the case of a pair, long-range interaction. Methods Funct. Anal. Topology 10, 3343.Google Scholar
Kondratiev, Y., Pasurek, T. and Röckner, M. (2012). Gibbs measures of continuous systems: an analytic approach. Rev. Math. Phys. 24, 1250026.10.1142/S0129055X12500262CrossRefGoogle Scholar
Last, G. and Penrose, M. (2017). Lectures on the Poisson Process, Vol. 7. Cambridge University Press.10.1017/9781316104477CrossRefGoogle Scholar
Møller, J. and Helisová, K. (2008). Power diagrams and interaction processes for unions of discs. Adv. Appl. Prob. 40, 321347.10.1239/aap/1214950206CrossRefGoogle Scholar
Ruelle, D. (1969). Statistical Mechanics: Rigorous Results. W. A. Benjamin, Inc., New York.Google Scholar
Ruelle, D. (1970). Superstable interactions in classical statistical mechanics. Commun. Math. Phys. 18, 127159.CrossRefGoogle Scholar
Widom, B. and Rowlinson, J. (1970). New model for the study of liquid-vapor phase transitions. J. Chem. Phys. 52, 16701684.CrossRefGoogle Scholar