Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-09T12:40:34.487Z Has data issue: false hasContentIssue false

Double hypergeometric Lévy processes and self-similarity

Published online by Cambridge University Press:  25 February 2021

Andreas E. Kyprianou*
Affiliation:
University of Bath
Juan Carlos Pardo*
Affiliation:
Centro de Investigación en Matemáticas
Matija Vidmar*
Affiliation:
University of Ljubljana
*
*Postal address: Department of Mathematical Sciences, University of Bath, Claverton Down, Bath, BA2 7AY, United Kingdom. Email: [email protected]
**Postal address: Centro de Investigación en Matemáticas, Apartado Postal 402, CP 36000, Calle Jalisco s/n, Mineral de Valencianam Guanajuato, Gto. Mexico. Email: [email protected]
***Postal address: Department of Mathematics, Faculty of Mathematics and Physics, University of Ljubljana, Jadranska ulica 21, 1000 Ljubljana, Slovenia. Email: [email protected]

Abstract

Motivated by a recent paper (Budd (2018)), where a new family of positive self-similar Markov processes associated to stable processes appears, we introduce a new family of Lévy processes, called the double hypergeometric class, whose Wiener–Hopf factorisation is explicit, and as a result many functionals can be determined in closed form.

Type
Research Papers
Copyright
© The Author(s), 2021. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asmussen, S. (2003). Applied Probability and Queues. Applications of Mathematics: Stochastic Modelling and Applied Probability. Springer, New York.Google Scholar
Bertoin, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics. Cambridge University Press.Google Scholar
Bertoin, J. and Yor, M. (2001). On subordinators, self-similar Markov processes and some factorizations of the exponential variable. Electron. Commun. Prob. 6, 95106.CrossRefGoogle Scholar
Budd, T. (2018). The peeling process on random planar maps coupled to an O(n) loop model. arXiv:1809.02012v1.Google Scholar
Caballero, M. E. and Chaumont, L. (2006). Conditioned stable Lévy processes and the Lamperti representation. J. Appl. Prob. 43, 967983.CrossRefGoogle Scholar
Caballero, M. E., Chaumont, L. and Rivero, V. (2019). Resurrected Lévy processes. Preprint.Google Scholar
Caballero, M. E., Pardo, J. C. and Pérez, J. L. (2010). On Lamperti stable processes. Prob. Math. Statist. 30, 128.Google Scholar
Chaumont, L., Pantí, H. and Rivero, V. (2013). The Lamperti representation of real-valued self-similar Markov processes. Bernoulli, 19, 24942523.CrossRefGoogle Scholar
Chybiryakov, O. The Lamperti correspondence extended to Lévy processes and semi-stable Markov processes in locally compact groups. Stoch. Process. Appl. 116, 857872.CrossRefGoogle Scholar
Dereich, S., Döring, L. and Kyprianou, A. E. (2017). Real self-similar processes started from the origin. Ann. Prob. 45, 19522003.CrossRefGoogle Scholar
Gradshteyn, I. S. and Ryzhik, I. M. (2007). Table of Integrals, Series, and Products. Elsevier, Amsterdam.Google Scholar
Graversen, S. E. and Vuolle-Apiala, J. (1986). $\alpha$-self-similar Markov processes. Prob. Theory Relat. Fields 71, 149158.CrossRefGoogle Scholar
Henrici, P. (1991). Applied and Computational Complex Analysis, Vol. 2. Wiley, Chichester.Google Scholar
Horton, E. L. and Kyprianou, A. E. (2016). More on hypergeometric Lévy processes. Adv. Appl. Prob. 48, 153158.CrossRefGoogle Scholar
Kiu, S. C. (1980). Semistable Markov processes in ${\textbf{R}}^{n}$. Stoch. Process. Appl. 10, 183191.CrossRefGoogle Scholar
Kuznetsov, A., Kyprianou, A. E. and Pardo, J. C. (2012). Meromorphic Lévy processes and their fluctuation identities. Ann. Appl. Prob. 22, 11011135.CrossRefGoogle Scholar
Kuznetsov, A., Kyprianou, A. E., Pardo, J. C. and van Schaik, K. (2011). A Wiener–Hopf Monte Carlo simulation technique for Lévy processes. Ann. Appl. Prob. 21, 21712190.CrossRefGoogle Scholar
Kuznetsov, A., Kyprianou, A. E., Pardo, J. C. and Watson, A. R. (2014). The hitting time of zero for a stable process. Electron. J. Prob. 19, 126.CrossRefGoogle Scholar
Kuznetsov, A. and Pardo, J. C. (2013). Fluctuations of stable processes and exponential functionals of hypergeometric Lévy processes. Acta Appl. Math. 123, 113139.CrossRefGoogle Scholar
Kyprianou, A. E. (2014). Fluctuations of Lévy Processes with Applications: Introductory Lectures. Springer, Berlin.CrossRefGoogle Scholar
Kyprianou, A. E. (2016). Deep factorisation of the stable process. Electron. J. Prob. 21, 128.CrossRefGoogle Scholar
Kyprianou, A. E., Pardo, J. C. and Watson, A. R. (2014). The extended hypergeometric class of Lévy processes. J. Appl. Prob. 51, 391408.CrossRefGoogle Scholar
Kyprianou, A. E., Pardo, J. C. and Watson, A. R. (2014). Hitting distributions of $\alpha$-stable processes via path censoring and self-similarity. Ann. Prob. 42, 398430.CrossRefGoogle Scholar
Levin, B. Y. (1996). Lectures on Entire Functions. Translations of Mathematical Monographs. American Mathematical Society, Providence, RI.CrossRefGoogle Scholar
Maulik, K. and Zwart, B. (2006). Tail asymptotics for exponential functionals of Lévy processes. Stoch. Process. Appl. 116, 156177.CrossRefGoogle Scholar
Rogers, L. C. G. (1983). Wiener–Hopf factorization of diffusions and Lévy processes. Proc. London Math. Soc. 47, 177191.CrossRefGoogle Scholar
Schilling, R. L., Song, R. and Vondraček, Z. (2010). Bernstein Functions: Theory and Applications. De Gruyter, Berlin.Google Scholar
Song, R. and Vondraček, Z. (2010). Some remarks on special subordinators. Rocky Mt. J. Math. 40, 321337.CrossRefGoogle Scholar
Vigon, V. (2002). Simplifiez vos Lévy en titillant la factorisation de Wiener–Hopf. Éditions universitaires européennes, Saarbrücken.Google Scholar
Vuolle-Apiala, J. and Graversen, S. E. (1986). Duality theory for self-similar processes. Ann. Inst. H. Poincaré Prob. Statist. 22, 323332.Google Scholar
Watson, A. R. (2019). Private commnication.Google Scholar