Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by Crossref.
Grimvall, Anders
1973.
On the transition from a Markov chain to a continuous time process.
Stochastic Processes and their Applications,
Vol. 1,
Issue. 4,
p.
335.
Lindvall, Torgny
1974.
Limit theorems for some functionals of certain Galton-Watson branching processes.
Advances in Applied Probability,
Vol. 6,
Issue. 2,
p.
309.
Swensen, Anders Rygh
1985.
A note on statistical inference for a class of diffusions and approximate diffusions.
Stochastic Processes and their Applications,
Vol. 19,
Issue. 1,
p.
111.
Borovkov, K. A.
1986.
On the Convergence of Branching Processes to a Diffusion Process.
Theory of Probability & Its Applications,
Vol. 30,
Issue. 3,
p.
496.
1986.
Markov Processes.
p.
508.
Strasser, Helmut
1986.
Martingale difference arrays and stochastic integrals.
Probability Theory and Related Fields,
Vol. 72,
Issue. 1,
p.
83.
Nakagawa, Tetsuo
1986.
Convergence of critical multitype Galton-Watson branching processes.
Stochastic Processes and their Applications,
Vol. 23,
Issue. 2,
p.
269.
Vatutin, V. A.
and
Zubkov, A. M.
1987.
Branching processes. I.
Journal of Soviet Mathematics,
Vol. 39,
Issue. 1,
p.
2431.
Wei, C.Z.
and
Winnicki, J.
1989.
Some asymptotic results for the branching process with immigration.
Stochastic Processes and their Applications,
Vol. 31,
Issue. 2,
p.
261.
Cox, J. T.
and
Greven, A.
1990.
On the long term behavior of some finite particle systems.
Probability Theory and Related Fields,
Vol. 85,
Issue. 2,
p.
195.
Kim, Yongdai
1998.
Optimal estimation for continuous state branching processes with discrete sampling.
Journal of Statistical Planning and Inference,
Vol. 70,
Issue. 1,
p.
77.
Pitman, Jim
1999.
The SDE Solved By Local Times of a Brownian Excursion or Bridge Derived From the Height Profile of a Random Tree or Forest.
The Annals of Probability,
Vol. 27,
Issue. 1,
Borovkov, K.
2003.
A Note on Diffusion-Type Approximation to Branching Processes in Random Environments.
Theory of Probability & Its Applications,
Vol. 47,
Issue. 1,
p.
132.
Afanasyev, V. I.
2005.
On a conditional invariance principle for a critical Galton–Watson branching process.
Discrete Mathematics and Applications,
Vol. 15,
Issue. 1,
Афанасьев, Валерий Иванович
and
Afanasyev, Valeriy Ivanovich
2005.
Об условном принципе инвариантности для критического ветвящегося процесса Гальтона - Ватсона.
Дискретная математика,
Vol. 17,
Issue. 1,
p.
35.
Rahimov, I.
2007.
Functional limit theorems for critical processes with immigration.
Advances in Applied Probability,
Vol. 39,
Issue. 4,
p.
1054.
Афанасьев, Валерий Иванович
and
Afanasyev, Valeriy Ivanovich
2007.
Процесс Гальтона - Ватсона при условии достижения высокого уровня.
Теория вероятностей и ее применения,
Vol. 52,
Issue. 3,
p.
588.
Afanasyev, V. I.
2008.
Galton–Watson Process Attaining a High Level.
Theory of Probability & Its Applications,
Vol. 52,
Issue. 3,
p.
509.
Zähle, Henryk
and
Leonenko, Nikolai
2008.
Weak Approximation of SDEs by Discrete‐Time Processes.
International Journal of Stochastic Analysis,
Vol. 2008,
Issue. 1,
Афанасьев, Валерий Иванович
and
Afanasyev, Valeriy Ivanovich
2010.
Принцип инвариантности для критического процесса Гальтона - Ватсона, достигающего высокого уровня.
Теория вероятностей и ее применения,
Vol. 55,
Issue. 4,
p.
625.