Published online by Cambridge University Press: 14 July 2016
We consider the problem of product pricing when the firm's market share is changing stochastically according to a birth and death process. The current market share together with the price prevailing determine the current rate of profit made as well as the birth and death rates. The optimal pricing policy must balance the immediate advantage of setting a high price in terms of increased current profit against the disadvantage in terms of a possible erosion of the future market share. We formulate a continuous-time Markov decision model and analyse it using a recent technique developed by Lippman [6] for optimization of exponential queueing systems. The optimal pricing policy is characterized as having a sort of monotonicity property. We also analyse the dependence of the optimal policy on the problem parameters and indicate further extensions of the model.