Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Doney, R. A.
1985.
Conditional limit theorems for asymptotically stable random walks.
Zeitschrift f�r Wahrscheinlichkeitstheorie und Verwandte Gebiete,
Vol. 70,
Issue. 3,
p.
351.
Afanas'ev, V. I.
1987.
Mean value of a function of a random walk up to the time of the first passage to the semiaxis.
Mathematical Notes of the Academy of Sciences of the USSR,
Vol. 42,
Issue. 6,
p.
992.
Afanas’ev, V. I.
1987.
On Functionals of a Random Walk Prior to First Reaching the Negative Half-Axis.
Theory of Probability & Its Applications,
Vol. 31,
Issue. 4,
p.
683.
Topolski, K.
1988.
Conditioned limit theorem for virtual waiting time process of the GI/G/1 queue.
Queueing Systems,
Vol. 3,
Issue. 4,
p.
377.
Szczotka, W?adys?aw
and
Topolski, Krzysztof
1989.
Conditioned limit theorem for the pair of waiting time and queue line processes.
Queueing Systems,
Vol. 5,
Issue. 4,
p.
393.
Stadje, Wolfgang
1994.
On the behavior of the batch arrival queueMx/M/1 during a busy period.
Naval Research Logistics,
Vol. 41,
Issue. 2,
p.
153.
Daley, D. J.
and
Servi, L. D.
1994.
Approximating last-exit probabilities of a random walk, by application to conditional queue length moments within busy periods of M/GI/1 queues.
Journal of Applied Probability,
Vol. 31,
Issue. A,
p.
251.
Афанасьев, Валерий Иванович
and
Afanasyev, Valeriy Ivanovich
2000.
О моменте достижения максимума критическим ветвящимся процессом в случайной среде и остановленным случайным блужданием.
Дискретная математика,
Vol. 12,
Issue. 2,
p.
31.
Афанасьев, Валерий Иванович
and
Afanasyev, Valeriy Ivanovich
2003.
О соотношении максимального и общего числа частиц в критическом ветвящемся процессе в случайной среде.
Теория вероятностей и ее применения,
Vol. 48,
Issue. 3,
p.
435.
Afanasyev, V. I.
2004.
On the Ratio Between the Maximal and Total Numbers of Individuals in a Critical Branching Process in a Random Environment.
Theory of Probability & Its Applications,
Vol. 48,
Issue. 3,
p.
384.
Dieker, A.B.
2005.
Conditional limit theorems for queues with Gaussian input, a weak convergence approach.
Stochastic Processes and their Applications,
Vol. 115,
Issue. 5,
p.
849.
Afanasyev, Valeriy I.
2017.
Functional limit theorem for a stopped random walk attaining a high level.
Discrete Mathematics and Applications,
Vol. 27,
Issue. 5,
p.
269.
Afanasyev, Valeriy Ivanovich
2019.
Функциональная предельная теорема для локального времени остановленного случайного блуждания.
Дискретная математика,
Vol. 31,
Issue. 1,
p.
7.
Afanasyev, Valeriy I.
2020.
Functional limit theorem for the local time of stopped random walk.
Discrete Mathematics and Applications,
Vol. 30,
Issue. 3,
p.
147.
Afanasyev, V. I.
2022.
On the Local Time of a Stopped Random Walk Attaining a High Level.
Proceedings of the Steklov Institute of Mathematics,
Vol. 316,
Issue. 1,
p.
5.
Afanasyev, Valeriy Ivanovich
2022.
О локальном времени остановленного случайного блуждания, достигающего высокого уровня.
Труды Математического института имени В. А. Стеклова,
Vol. 316,
Issue. ,
p.
11.