Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T06:32:01.292Z Has data issue: false hasContentIssue false

Collision probabilities for convex sets

Published online by Cambridge University Press:  14 July 2016

Wolfgang Weil*
Affiliation:
Universität Karlsruhe
*
Postal address: Mathematisches Institut II, Universität Karlsruhe, Englerstrasse 2, 7500 Karlsruhe 1, West Germany.

Abstract

Let K, LEn be non-empty, closed, convex sets, K bounded, and suppose boundary sets αof K and ß of L are painted. If K undergoes a random motion such that K and L touch, the probability for a paint-to-paint contact is expressed by curvature measures of K and L. This generalizes and simplifies previous work of Molter (1986) on infinite cylinders L touching a convex body K.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 1989 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Federer, H. (1959) Curvature measures. Trans Amer. Math. Soc. 93, 418491.CrossRefGoogle Scholar
Molter, U. (1986) Tangential measure on the set of convex infinite cylinders. J. Appl. Prob. 23, 961972.CrossRefGoogle Scholar
Schneider, R. (1980) Curvature measures and integral geometry of convex bodies. Rend. Sem. Mat. Univ. Politecn. Torino 38, 7998.Google Scholar
Schneider, R. (1987) Curvature measures and integral geometry of convex bodies, II. Rend. Sem. Mat. Univ. Politecn. Torino 44, 263275.Google Scholar
Schneider, R. and Wieacker, J. A. (1984) Random touching of convex bodies. In Stochastic Geometry, Geometric Statistics, Stereology, ed. Ambartzumian, R. V. and Weil, W., Teubner, Leipzig, 154169.Google Scholar
Weil, W. (1979a) Berührwahrscheinlichkeiten für konvexe Körper. Z. Wahrscheinlichkeitsth. 48, 327338.Google Scholar
Weil, W. (1979b) Kinematic integral formulas for convex bodies. In Contributions to Geometry. Proc. Geometry-Symp. Siegen 1978, ed. Tölke, J. and Wills, J. M., Birkhäuser, Basel, 6076.Google Scholar
Weil, W. (1981) Zufällige Berührung konvexer Körper durch q-dimensionale Ebenen. Resultate Math. 4, 84101.CrossRefGoogle Scholar