Published online by Cambridge University Press: 22 November 2021
We prove concentration inequality results for geometric graph properties of an instance of the Cooper–Frieze [5] preferential attachment model with edge-steps. More precisely, we investigate a random graph model that at each time
$t\in \mathbb{N}$
, with probability p adds a new vertex to the graph (a vertex-step occurs) or with probability
$1-p$
an edge connecting two existent vertices is added (an edge-step occurs). We prove concentration results for the global clustering coefficient as well as the clique number. More formally, we prove that the global clustering, with high probability, decays as
$t^{-\gamma(p)}$
for a positive function
$\gamma$
of p, whereas the clique number of these graphs is, up to subpolynomially small factors, of order
$t^{(1-p)/(2-p)}$
.