Article contents
Calculating extinction probabilities for the birth and death chain in a random environment
Published online by Cambridge University Press: 14 July 2016
Abstract
In a previous investigation (Torrez (1978)) conditions were given for extinction and instability of a stochastic process (Zn) evolving in a random environment controlled by an irreducible Markov chain (Yn) with state space 𝒴 The process (Yn, Zn) is Markovian with state space 𝒴 × {0,1, ···, N} where 𝒴 = {1,· ··,m} and the marginal process (Zn) is a birth and death chain on {0,1,· ··,N}, with 0 and N made absorbing, when conditioned on a fixed sequence of environmental states of (Yn). This paper provides bivariate finite difference methods for calculating (i) P(Zn → 0) when this probability is not one; and (ii) the expected duration of the process Zn. For (i), the cases when the transition probabilities of the (Yn)-conditioned process (Zn) are non-homogeneous and homogeneous are considered separately. Examples are given to illustrate these methods.
Keywords
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 1979
References
- 9
- Cited by