Article contents
Branching Process Approach for 2-Sat Thresholds
Published online by Cambridge University Press: 14 July 2016
Abstract
It is well known that, as n tends to ∞, the probability of satisfiability for a random 2-SAT formula on n variables, where each clause occurs independently with probability α / 2n, exhibits a sharp threshold at α = 1. We study a more general 2-SAT model in which each clause occurs independently but with probability αi / 2n, where i ∈ {0, 1, 2} is the number of positive literals in that clause. We generalize the branching process arguments used by Verhoeven (1999) to determine the satisfiability threshold for this model in terms of the maximum eigenvalue of the branching matrix.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © Applied Probability Trust 2010
Footnotes
Supported by NSF grants DMS 0528488 and DMS 0548249, and ONR grant N0014-07-1-05-06.
References
- 1
- Cited by