Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-09T13:54:21.987Z Has data issue: false hasContentIssue false

Bounds for the hazard rate and the reversed hazard rate of the convolution of dependent random lifetimes

Published online by Cambridge University Press:  11 December 2019

Félix Belzunce*
Affiliation:
University of Murcia
Carolina Martínez-Riquelme*
Affiliation:
University of Murcia
*
*Postal address: Departamento Estadística e Investigación Operativa, Universidad de Murcia, Facultad de Matemáticas, Campus de Espinardo, 30100 Espinardo (Murcia), Spain.
*Postal address: Departamento Estadística e Investigación Operativa, Universidad de Murcia, Facultad de Matemáticas, Campus de Espinardo, 30100 Espinardo (Murcia), Spain.

Abstract

An upper bound for the hazard rate function of a convolution of not necessarily independent random lifetimes is provided, which generalizes a recent result established for independent random lifetimes. Similar results are considered for the reversed hazard rate function. Applications to parametric and semiparametric models are also given.

Type
Research Papers
Copyright
© Applied Probability Trust 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arnold, B. C. and Strauss, D. (1988). Bivariate distributions with exponential conditionals. J. Amer. Statist. Assoc. 83, 522527.CrossRefGoogle Scholar
Arnold, B., Castillo, E. and Sarabia, J. M. (1999). Conditional Specification of Statistical Models. Springer Series in Statistics. Springer, New York.Google Scholar
Barlow, R. E., Marshall, A. W. and Proschan, F. (1963). Properties of probability distributions with monotone hazard rate. Ann. Math. Statist. 34, 375389.CrossRefGoogle Scholar
Belzunce, F., Martnez-Riquelme, C. and Mulero, J. (2015). An Introduction to Stochastic Orders. Elsevier/Academic Press, Amsterdam.Google Scholar
Block, H., Langberg, N. and Savits, T. (2014). The limiting failure rate for a convolution of gamma distributions. Statist. Prob. Lett. 94, 176180.CrossRefGoogle Scholar
Block, H., Langberg, N. and Savits, T. (2015). The limiting failure rate for a convolution of life distributions. J. Appl. Prob. 52, 894898.CrossRefGoogle Scholar
Block, H. and Savits, T. (2015). The failure rate of a convolution dominates the failure rate of any IFR component. Statist. Prob. Lett. 107, 142144.CrossRefGoogle Scholar
Block, H., Savits, T. and Singh, H. (1998). The reversed hazard rate function. Prob. Eng. Inf. Sci. 12, 6990.CrossRefGoogle Scholar
Chechile, R. A. (2011). Properties of reverse hazard functions. J. Math. Psych. 55, 203222.CrossRefGoogle Scholar
Finkelstein, M. S. (2002). On the reversed hazard rate. Reliab. Eng. Syst. Safe. 48, 7175.CrossRefGoogle Scholar
Karlin, S. (1968). Total Positivity. Stanford University Press, Palo Alto, CA.Google Scholar
Kotz, S., Balakrishnan, N. and Johnson, N. L. (2000). Continuous Multivariate Distributions, Vol. 1, 2nd edn. Wiley-Interscience, New York.CrossRefGoogle Scholar
Lai, C. D. and Xie, M. (2006). Stochastic Ageing and Dependence for Reliability. Springer, New York.Google Scholar
Lee, M. L. T. (1985). Dependence by reverse regular rule. Ann. Prob. 13, 583591.CrossRefGoogle Scholar
Navarro, J., Esna-Ashari, M., Asadi, M. and Sarabia, J. M. (2015). Bivariate distributions with conditionals satisfying the proportional generalized odds rate model. Metrika 78, 691709.CrossRefGoogle Scholar
Navarro, J. and Sarabia, J. M. (2013). Reliability properties of bivariate conditional proportional hazard rate models. J. Multivariate Anal. 113, 116127.CrossRefGoogle Scholar
Navarro, J. and Sordo, M. A. (2018). Stochastic comparisons and bounds for conditional distributions by using copula properties. Dependence Modelling 6, 156177.CrossRefGoogle Scholar
Shaked, M. (1977). A family of concepts of dependence for bivariate distributions. J. Amer. Statist. Assoc. 72, 642650.CrossRefGoogle Scholar