Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-09T12:47:11.463Z Has data issue: false hasContentIssue false

A birth, death and migration process

Published online by Cambridge University Press:  14 July 2016

S. R. Adke*
Affiliation:
University of Poona, India

Abstract

A model proposed by Bailey (1968) for migratory individuals which reproduce according to a simple birth-death process is generalized to include time dependent birth and death rates.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adke, S. R. and Moyal, J. E. (1963) A birth, death and diffusion process. J. Math. Anal. Appl. 7, 209224.CrossRefGoogle Scholar
Adke, S. R. (1964) The generalized birth and death process and Gaussian diffusion. J. Math. Anal. Appl. 9, 336340.Google Scholar
Bailey, N. T. J. (1968) Stochastic birth, death and migration process for spatially distributed populations. Biometrika 55, 189198.CrossRefGoogle Scholar
Harris, T. E. (1963) The Theory of Branching Processes. Springer-Verlag, Berlin.Google Scholar
Kendall, D. G. (1948) On the generalized birth and death process. Ann. Math. Statist. 19, 115.Google Scholar
Moyal, J. E. (1962) The general theory of stochastic population processes. Acta Math. 108, 131.CrossRefGoogle Scholar