Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T05:08:46.801Z Has data issue: false hasContentIssue false

Asymptotic distribution of the maximum of n independent stochastic processes

Published online by Cambridge University Press:  14 July 2016

A. A. Balkema*
Affiliation:
University of Amsterdam
L. De Haan*
Affiliation:
Erasmus University, Rotterdam
R. L. Karandikar*
Affiliation:
Indian Statistical Institute, New Delhi
*
Postal address: Mathematical Institute, University of Amsterdam, Plantage Muidergracht 24, 1018 TV Amsterdam, The Netherlands.
∗∗ Postal address: Econometric Institute, Erasmus University, Rotterdam, P.O. Box 1738, 3000 DR Rotterdam, The Netherlands.
∗∗∗ Postal address: Indian Statistical Institute, 7 S. J. S. Sansanwal Marg, New Delhi 110 016, India.

Abstract

Limits in distribution of maxima of independent stochastic processes are characterized in terms of spectral functions acting on a Poisson point process.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1993 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Balkema, A. A. and Resnick, S. I. (1977) Max-infinite divisibility. J. Appl. Prob. 14, 309319.Google Scholar
Brozius, H. and De Haan, L. (1987) On limiting laws for the convex hull of a sample. J. Appl. Prob. 24, 852862.Google Scholar
Gerritse, G. (1986) Supremum self-decomposable random vectors. Prob. Theory Rel. Fields 72, 1733.Google Scholar
Giné, E., Hahn, M. G. and Vatan, P. (1990) Max infinitely divisible and max stable sample continuous processes. Prob. Theory Rel. Fields 82, 139165.Google Scholar
De Haan, L. (1984), A spectral representation for max-stable processes. Ann. Prob. 12, 11941204.Google Scholar
De Haan, L. (1990) Fighting the arch-enemy with mathematics. Statist. Neerlandica 44, 4568.Google Scholar
Mejzler, D. (1956) On the problem of the limit distributions for the maximal term of a variational series. Lvov Politechn Inst. Naucn. Zap. Ser. Fiz.-Mat. 38, 90109 (Russian).Google Scholar
O'Brien, G. L., Torfs, P. and Vervaat, W. (1990) Selfsimilar stationary extremal processes. Prob. Theory Rel. Fields. 87, 97119.Google Scholar
Pancheva, E. I. (1990) Self-decomposable distributions for maxima of independent random vectors. Prob. Theory Rel. Fields 84, 267278.CrossRefGoogle Scholar
Rényi, A. (1967) Remarks on the Poisson process. Studia Sci. Math. Hung. 2, 119123.Google Scholar
Resnick, S. I. (1987) Extreme Values, Regular Variation and Point Processes. Springer, New York.Google Scholar
Rockafellar, R. T. (1970) Convex Analysis. Princeton University Press.Google Scholar
Royden, H. L. (1968) Real Analysis. Collier MacMillan London.Google Scholar
Vatan, P. (1985) Max-infinite divisibility and max-stability in infinite dimensions. Lecture Notes in Mathematics, 1153, 400425. Springer-Verlag, New York.Google Scholar