Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T05:13:11.175Z Has data issue: false hasContentIssue false

Anticipation Processes

Published online by Cambridge University Press:  05 September 2017

Abstract

An anticipation process is a continuous-time Markov process, having an element of deterministic drift in its transition structure. The theory of such processes, developed here from an elementary (Chapman-Kolmogorov) point of view, draws together a number of threads of theoretical and applied probability.

Type
Part V — Stochastic Processes
Copyright
Copyright © 1975 Applied Probability Trust 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Blumenthal, R. M. and Getoor, R. K. (1964) Local times for Markov processes. Z. Wahrscheinlichkeitsth. 3, 5074.CrossRefGoogle Scholar
[2] Chung, K. L. (1963) On the boundary theory for Markov chains. Acta Math. 110, 1977.Google Scholar
[3] Chung, K. L. (1966) On the boundary theory for Markov chains II. sActa Acta Math. 115, 111163.Google Scholar
[4] Chung, K. L. (1970) Lectures on Boundary Theory for Markov Chains. Princeton University Press.Google Scholar
[5] Davies, E. B. and Vincent-Smith, G. F. (1968) Tensor products, infinite products, and projective limits of Choquet simplexes. Math. Scand. 22, 145164.Google Scholar
[6] Edwards, D. A. (1974) On descending sequences of Choquet simplexes. Bull. Soc. Math. France (To appear).Google Scholar
[7] Feller, W. (1964) On semi-Markov processes. Proc. Nat. Acad. Sci. 51, 653659.CrossRefGoogle ScholarPubMed
[8] Hoffman-J⊘rgensen, J. (1969) Markov sets. Math. Scand. 24, 145166.CrossRefGoogle Scholar
[9] Horowitz, J. (1972) Semilinear Markov processes, subordinators and renewal theory. Z. Wahrscheinlichkeitsth. 24, 167193.CrossRefGoogle Scholar
[10] Kingman, J. F. C. (1965) Linked systems of regenerative events. Proc. London Math. Soc. 15, 125150.Google Scholar
[11] Kingman, J. F. C. (1972) Regenerative Phenomena. Wiley, London.Google Scholar
[12] Kingman, J. F. C. (1973) Homecomings of Markov processes. Adv. Appl. Prob. 5, 66102.CrossRefGoogle Scholar
[13] Kingman, J. F. C. (1974) On the Chapman-Kolmogorov equation. Phil. Trans. Roy. Soc. A. 276, 341369.Google Scholar
[14] Krylov, N. V. and Yuskevitch, A. A. (1964) Markov random sets. Teor. Veroyatnost. i Primenen, 9, 738743.Google Scholar
[15] Lévy, P. (1954) Processus semi-Markoviens. Proc. Int. Cong. Math. Amsterdam 3, 416426.Google Scholar
[16] Maisonneuve, B. (1972) Systèmes Régénératifs. Doctoral Thesis, University of Strasbourg.Google Scholar
[17] Meyer, P. A. (1974) Ensembles aléatoires markoviens homogènes. Sém. Prob. Univ. Strasbourg (To appear).Google Scholar
[18] Neveu, J. (1961) Une généralisation des processus à accroissements positifs indépendants. Abh. Math. Sem. Hamburg 25, 3661.Google Scholar
[19] Pyke, R. (1961) Markov renewal processes; definitions and preliminary properties. Ann. Math. Statist. 32, 12311242.Google Scholar
[20] Pyke, R. (1961) Markov renewal processes with finitely many states. Ann. Math. Statist. 32, 12431259.CrossRefGoogle Scholar
[21] Smith, W. L. (1955) Regenerative stochastic processes. Proc. Roy. Soc. A 232, 631.Google Scholar
[22] Taylor, S. J. (1973) Sample path properties of processes with stationary independent increments. Stochastic Analysis, eds. Kendall, D. G. and Harding, E. F. Wiley, London, 387414,Google Scholar