Published online by Cambridge University Press: 14 July 2016
We derive asymptotic forms for the distributions of k-point scan statistics as the interval L under study becomes infinite, while k and the window length are held fixed. In the Poisson case the intensity is also held fixed. In the uniform case the number of points N becomes infinite and N/L tends to a limit, representing a limiting intensity. These results are made explicit for k = 3, and in the Poisson case provide approximations which are typically accurate to six or seven figures, even for small L.