Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T01:03:54.022Z Has data issue: false hasContentIssue false

Stochastic approach to chemical kinetics

Published online by Cambridge University Press:  14 July 2016

Donald A. McQuarrie*
Affiliation:
North American Rockwell Science Center, Thousand Oaks, California

Extract

In this article we shall present a summary of the various stochastic approaches and applications to chemical reaction kinetics, but before discussing these we first briefly introduce the basic ideas and definitions of classical or deterministic chemical kinetics. One of the basic questions to which chemists address themselves is the rate of chemical reactions, or in other words, how long it takes for a chemical reaction to attain completion, or equilibrium. Apparently the first significant quantitative investigation was made in 1850 by L. Wilhelmy [93]. He studied the inversion of sucrose (cane sugar) in aqueous solutions of acids, whose reaction is He found empirically that the rate of decrease of concentration of sucrose was simply proportional to the concentration remaining unconverted, i.e., if S(t) is the concentration of sucrose, then The constant of proportionality is called the rate constant of the reaction. If So is the initial concentration of sucrose, then Since then an enormous number of reactions has been studied and the field of chemical kinetics is now one of the largest areas of chemical research. The importance of the field lies in the fact that it yields concise expressions for the time dependence of reactions, predicts yields, optimum economic conditions, and gives one much insight into the actual molecular processes involved. The detailed molecular picture of a reaction process is called the mechanism of the reaction.

Type
Review Paper
Copyright
Copyright © Applied Probability Trust 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Alfrey, T. Jr. and Lloyd, W. G. (1963) Kinetics of high polymer reactions: effects of neighboring groups. J. Chem. Phys. 38, 318321.CrossRefGoogle Scholar
[2] Amemiya, A. (1962) Theory of nonrandom degradation of linear chain molecules. J. Phys. Soc. Japan 17, 12451255.CrossRefGoogle Scholar
[3] Amemiya, A. (1962) Further investigation of the nonrandom degradation of linear chain molecules. J. Phys. Soc. Japan 17, 16941711.CrossRefGoogle Scholar
[4] Andres, R. P. and Boudart, M. (1966) Time lag in multistate kinetics: nucleation J. Chem. Phys. 42, 20572064.CrossRefGoogle Scholar
[5] Arends, C. B. (1962) General solution to the problem of the effect of neighboring groups in polymer reactions. J. Chem. Phys. 38, 322324.CrossRefGoogle Scholar
[6] Bailey, N. T. J. (1963) A simple stochastic epidemic: a complete solution in terms of known functions. Biometrika 50, 235240.CrossRefGoogle Scholar
[7] Bartholomay, A. F. (1958) On the linear birth and death processes of biology as Markov chains. Bull. Math. Biophys. 20, 97118.CrossRefGoogle Scholar
[8] Bartholomay, A. F. (1958) Stochastic models for chemical reactions. I. Theory of the unimolecular reaction process. Bull. Math. Biophys. 20, 175190.CrossRefGoogle Scholar
[9] Bartholomay, A. F. (1959) Stochastic models for chemical reactions. II. The unimolecular rate constant. Bull. Math. Biophys. 21, 363373.CrossRefGoogle Scholar
[10] Bartholomay, A. F. (1960) Molecular set theory: a mathematical representation for chemical reaction mechanisms. Bull. Math. Biophys. 22, 285307.CrossRefGoogle Scholar
[11] Bartholomay, A. F. (1962) Enzymatic reaction rate theory: a stochastic approach. Ann. N. Y. Acad. Sci. 96, 897912.CrossRefGoogle ScholarPubMed
[12] Bartholomay, A. F. (1962) A stochastic approach to statistical kinetics with application to enzyme kinetics. Biochemistry 1, 223230.CrossRefGoogle ScholarPubMed
[13] Bazley, N. W., Montroll, E. W., Rubin, R. J., and Shuler, K. E. (1958) Studies in nonequilibrium rate processes, III. The vibrational relaxation of a system of anharmonic oscillators. J. Chem. Phys. 28, 700704; 29, 1185–1186.CrossRefGoogle Scholar
[14] Bharucha-Reid, A. T. (1960) Elements of the Theory of Markov Processes and Their Applications. McGraw-Hill, New York.Google Scholar
[15] Cairns, J. (1963) The bacterial chromosome and its manner of replication as seen by autoradiography. J. Mol. Biol. 6, 208214.CrossRefGoogle ScholarPubMed
[16] Carrington, T. (1961) Transition probabilities in multilevel systems: calculation from impulsive and steady state experiments. J. Chem. Phys. 35, 807816.CrossRefGoogle Scholar
[17] Chakraverty, B. K. (1966) Kinetics of clustering processes. Surface Sci. 4, 205220.CrossRefGoogle Scholar
[18] Chandrasekhar, S. (1943) Stochastic problems in physics and astronomy. Rev. Mod. Phys. 15, 189.CrossRefGoogle Scholar
[19] Cohen, E. R. and Reiss, H. (1963) Kinetics of reactant isolation. I. One dimensional problem. J. Chem. Phys. 38, 680691.CrossRefGoogle Scholar
[20] Coleman, B. D. and Fox, T. G. (1963) Multistate mechanism of homogeneous ionic polymerization. I. The diastereosequence distribution. J. Chem. Phys. 38, 10651075.CrossRefGoogle Scholar
[21] Coleman, B. D. and Fox, T. G. (1963) A multistate mechanism for homogeneous ionic polymerization. II. The molecular weight distribution. J. Am. Chem. Soc. 85, 12411244.CrossRefGoogle Scholar
[22] Coleman, B. D., Gornick, F., and Weiss, G. (1963) Statistics of irreversible termination in homogeneous anionic polymerization. J. Chem. Phys. 39, 32333239.CrossRefGoogle Scholar
[23] Courtney, W. G. (1962) Non-steady state nucleation. J. Chem. Phys. 36, 20092017.CrossRefGoogle Scholar
[24] Cox, D. R. and Miller, H. D. (1965) The Theory of Stochastic Processes. John Wiley & Sons, New York.Google Scholar
[25] Darvey, I. G., Ninham, B. W., and Staff, P. J. (1966) Stochastic models for second order chemical reaction kinetics. The equilibrium state. J. Chem. Phys. 45, 21452155.CrossRefGoogle Scholar
[26] Darvey, I. G. and Staff, P. J. (1966) Stochastic approach to first order chemical reaction kinetics. J. Chem. Phys. 44, 990997.CrossRefGoogle Scholar
[27] Delbrück, M. (1940) Statistical fluctuations in autocatalytic reactions. J. Chem. Phys. 8, 120124.CrossRefGoogle Scholar
[28] Deloecker, W. and Smets, G. (1959) Hydrolysis of methacrylic acid — methyl methacrylate copolymers. J. Polymer Sci. 40, 203216.CrossRefGoogle Scholar
[29] Dole, M. and Inokuti, M. (1963) Conditions for first or second order kinetics during multiple zone reactions. J. Chem. Phys. 39, 310314.CrossRefGoogle Scholar
[30] Erdélyi, A. et al. (1953) Higher Transcendental Functions. McGraw-Hill, New York.Google Scholar
[31] Feder, J., Russell, K. C., Lothe, J., and Pound, G. M. (1966) Homogeneous nucleation and growth of droplets in vapours. Adv. Phys. 15, 111178.CrossRefGoogle Scholar
[32] Feller, W. (1957) An Introduction to Probability Theory and Its Applications. John Wiley & Sons, New York.Google Scholar
[33] Flory, P. J. (1939) Intramolecular reaction between neighboring substituents of vinyl polymers. J. Am. Chem. Soc. 61, 15181521.CrossRefGoogle Scholar
[34] Flory, P. J. (1953) Principles of Polymer Chemistry. Cornell Univ. Press, Cornell.Google Scholar
[35] Fredrickson, A. G. (1966) Stochastic triangular reactions. Chem. Eng. Sci. 21, 687691.CrossRefGoogle Scholar
[36] Flory, P. J. (1966) Stochastic models for sterilization. Biotechnol. and Bioeng. 8, 167182.Google Scholar
[37] Frensdorff, H. K. and Pariser, R. (1963) Copolymerization as a Markov chain. J. Chem. Phys. 39, 23032309.CrossRefGoogle Scholar
[38] Gani, J. (1965) Stochastic models for bacteriophage. J. Appl. Prob. 2, 225268.CrossRefGoogle Scholar
[39] Gans, P. J. (1960) Open first order stochastic processes. J. Chem. Phys. 33, 691694.CrossRefGoogle Scholar
[40] Gibbs, J. H. and Dimarzio, E. A. (1959) Statistical mechanics of helix-coil transitions in biological macromolecules. J. Chem. Phys. 30, 271282.CrossRefGoogle Scholar
[41] Giddings, J. C. (1959) Nonequilibrium kinetics and chromatography. J. Chem. Phys. 31, 14621467.CrossRefGoogle Scholar
[42] Giddings, J. C. and Eyring, H. (1955) A molecular dynamic theory of chromatography. J. Phys. Chem. 59, 416421.CrossRefGoogle Scholar
[43] Go, N. (1967) Cooperative chemical kinetics. J. Phys. Soc. Japan 22, 413416.CrossRefGoogle Scholar
[44] Giddings, J. C. and Eyring, H. (1967) The kinetics of the helix-coil transformation of polypeptides. I. J. Phys. Soc. Japan 22, 416427.Google Scholar
[45] Goodrich, F. C. (1964) Nucleation rates and the kinetics of particle growth. Proc. Roy. Soc. A277, 155182.Google Scholar
[46] Gordon, ?. and Shenton, L. R. (1959) Probability model theory of chain-end activated polymer degradation. I. First order radical termination. J. Polym. Sci. 38, 157178.CrossRefGoogle Scholar
[47] Gottlieb, M. J. (1938) Concerning some polynomials orthogonal on a finite or enumerable set of points. Amer. J. Math. 60, 455460.CrossRefGoogle Scholar
[48] Herman, R. and Shuler, K. E. (1958) Studies in nonequilibrium rate processes. IV. The rotational and vibrational relaxation of a system of rotating oscillators. J. Chem. Phys. 29, 366374.CrossRefGoogle Scholar
[49] Herzfeld, K. F. and Litovitz, T. A. (1959) Absorption and Dispersion of Ultrasonic Waves, p. 88. Academic Press, New York.Google Scholar
[50] Hijmans, J. (1963) The composition distribution of multicomponent copolymers. I. General theory. Physica 29, 117.CrossRefGoogle Scholar
[51] Hijmans, J. (1963) The composition distribution of multicomponent copolymers. II. Applications. Physica 29, 819840.CrossRefGoogle Scholar
[52] Hill, T. L. (1956) Statistical Mechanics, Chapter 6. McGraw-Hill, New York.Google Scholar
[53] Hill, T. L. (1960) Statistical Thermodynamics, p. 182. Addison-Wesley, Reading, Mass. Google Scholar
[54] Hill, T. L. (1966) Studies in irreversible thermodynamics. IV. Diagrammatic representation of steady state fluxes for unimolecular systems. J. Theoret. Biol. 10, 442459.CrossRefGoogle ScholarPubMed
[55] Hill, T. L. (1966) Studies in irreversible thermodynamics. V. Statistical thermodynamics of a simple steady state membrane model. Proc. Nat. Acad. Sci. U.S. 55, 13791385.CrossRefGoogle ScholarPubMed
[56] Hill, T. L. (1966) Studies in irreversible thermodynamics. VI. Proc. Nat. Acad. Sci. U.S. 56, 4551.CrossRefGoogle ScholarPubMed
[57] Hill, T. L. (1966) Studies in irreversible thermodynamics. VII. Proc, Nat. Acad. Sci. U.S. 56, 840844.CrossRefGoogle ScholarPubMed
[58] Hill, T. L. and Kedem, O. (1966) Studies in irreversible thermodynamics. III. Models for steady state and active transport across membranes. J. Theoret. Biol. 10, 399441.CrossRefGoogle Scholar
[59] Hill, T. L. and Plesnor, I. (1964) Studies in irreversible thermodynamics. I. Internal equilibrium and the reciprocal relations. J. Chem. Phys. 41, 13591367.CrossRefGoogle Scholar
[60] Hill, T. L. and Plesnor, I. (1965) Studies in irreversible thermodynamics. II. A simple class of lattice models for open systems. J. Chem. Phys. 43, 267285.CrossRefGoogle Scholar
[61] Hirth, J. P. and Pound, G. M. (1963) in Condensation and Evaporation. Macmillan, New York.Google Scholar
[62] Hoare, M. (1963) Steady-state unimolecular processes in multilevel systems. J. Chem, Phys. 38, 16301635.CrossRefGoogle Scholar
[63] Inokuti, M. (1963) Weight-average and z-average degree of polymerization for polymers undergoing random scission. J. Chem. Phys. 38, 11741178.CrossRefGoogle Scholar
[64] Ishida, K. (1960) The probability approach in absorption processes. (In Japanese). Nippon Kagaku Zasshi 81, 524529.CrossRefGoogle Scholar
[65] Ishida, K. (1960) The stochastic model for unimolecular gas reaction. Bull. Chem. Soc. Japan 33, 10301036.CrossRefGoogle Scholar
[66] Ishida, K. (1964) Stochastic model for bimolecular reaction. J. Chem. Soc. 41, 24722478.Google Scholar
[67] Ishida, K. (1966) Stochastic approach to nonequilibrium thermodynamics of first order chemical reactions. J. Phys. Chem. 70, 38063811.CrossRefGoogle Scholar
[68] Ishida, K. and Yamamoto, Y. (1962) Notes on isotopic exchange reaction. J. Atomic Energy Soc. Japan 4, 322326.CrossRefGoogle Scholar
[69] Jachimowski, C. J., McQuarrie, D. A., and Russell, M. E. (1964) A stochastic approach to enzyme-substrate reactions. Biochemistry 3, 17321736.CrossRefGoogle ScholarPubMed
[70] Jachimowski, C. J., and Russell, M. E. (1965) A set theoretic approach to reaction kinetics. J. Chem. Phys. 42, 28192822.CrossRefGoogle Scholar
[71] Kastenbaum, M. A. (1960) The separation of molecular compounds by countercurrent dialysis: a stochastic process. Biometrika 47, 6977.CrossRefGoogle Scholar
[72] Keck, J. and Carrier, G. (1965) Diffusion theory of nonequilibrium dissociation and recombination. J. Chem. Phys. 43, 22842298.CrossRefGoogle Scholar
[73] Keller, J. B. (1962) Reaction kinetics of a long chain molecule. J. Chem. Phys. 37, 25842586.CrossRefGoogle Scholar
[74] Keller, J. B. (1963) Reaction kinetics of a long-chain molecule. II. Arends' solution. J. Chem. Phys. 38, 325326.CrossRefGoogle Scholar
[75] Kim, S. K. (1958) Mean first passage time for a random walker and its application to chemical kinetics. J. Chem. Phys. 28, 10571067.CrossRefGoogle Scholar
[76] Kimura, M. (1964) Diffusion models in population genetics. J. Appl. Prob. 1, 177232.CrossRefGoogle Scholar
[77] Kramers, H. A. (1940) Brownian motion in a field of force and the diffusion model of chemical reactions. Physica 7, 284304.CrossRefGoogle Scholar
[78] Krieger, I. M. and Gans, P. J. (1960) First order stochastic processes. J. Chem. Phys. 32, 247250.CrossRefGoogle Scholar
[79] Lauritzen, J. I., Dimarzio, E. A., and Passaglia, E. (1966) Kinetics of growth of multicomponent chains. J. Chem. Phys. 45, 44444454.CrossRefGoogle Scholar
[80] Lazare, L. (1963) Reaction kinetics of a long chain molecule. J. Chem. Phys. 39, 727729.CrossRefGoogle Scholar
[81] Lee, D. F., Scanlan, J., and Watson, W. F. (1963) The cyclization of natural rubber. Proc. Roy. Soc. A273, 345359.Google Scholar
[82] Levine, S. N. (1966) Enzyme amplifier kinetics. Science 152, 651653.CrossRefGoogle ScholarPubMed
[83] Lumry, R., Legare, R., and Miller, W. G. (1964) The dynamics of the helix-coil transition in poly-a-L-glumatic acid. Biopolymers 2, 489500.CrossRefGoogle Scholar
[84] Macfarlane, R. G. (1964) An enzyme cascade in the blood clotting mechanism and its function as biochemical amplifier. Nature 202, 498499.CrossRefGoogle ScholarPubMed
[85] Marvel, C. S. (1943) in The Chemistry of Large Molecules, ed. by Burk, R. E. and Grummit, O. Interscience, New York.Google Scholar
[86] Mazur, J. (1963) Some stochastic processes in polymer systems. J. Chem. Phys. 38, 193201.CrossRefGoogle Scholar
[87] McQuarrie, D. A. (1963) On the stochastic theory of chromatography. J. Chem. Phys. 38, 437445.CrossRefGoogle Scholar
[88] McQuarrie, D. A. (1963) Kinetics of small systems. I. J. Chem. Phys. 38, 433436.CrossRefGoogle Scholar
[89] McQuarrie, D. A., Jachimowski, C. J., and Russell, M. E. (1964) Kinetics of small systems. II. J. Chem. Phys. 40, 29142921.CrossRefGoogle Scholar
[90] McQuarrie, D. A., Mctague, J. P., and Reiss, H. (1965) Kinetics of polypeptide denaturation. Biopolymers 3, 657663.CrossRefGoogle ScholarPubMed
[91] Montroll, E. W. and Shuler, K. E. (1957) Studies in nonequilibrium rate processes. I. The relaxation of a system of harmonic oscillators. J. Chem. Phys. 28, 454464.CrossRefGoogle Scholar
[92] Montroll, E. W. and Shuler, K. E. (1958) The application of the theory of stochastic processes to chemical kinetics. Adv. Chem. Phys. 1, 361399.Google Scholar
[93] Moore, W. J. (1962) Physical Chemistry, 3rd ed. Prentice-Hall, Englewood Cliffs, N. J. Google Scholar
[94] Morawetz, H. and Gaetjens, E. (1958) A kinetic approach to the charactreization of the “microtacticity” of a polymer chain. J. Polymer Sci. 32, 526528.CrossRefGoogle Scholar
[95] Morawetz, H. and Zimmering, P. E. (1954) Reaction rate of polyelectrolyte derivatives. I. The solvolysis of acrylic acid-p-nitrophenyl methacrylate copolymers. J. Phys. Chem. 58, 753756.CrossRefGoogle Scholar
[96] Morse, P. M. and Feshbach, H. (1953) Methods of Theoretical Physics. McGraw-Hill, New York.Google Scholar
[97] Noyes, R. M. (1961) Effects of diffusion rates on chemical kinetics. Prog. in Reaction Kinetics 1, 129160.Google Scholar
[98] Peller, L. (1962) Matrix formulation of copolymerization statistics. J. Chem. Phys. 36, 29762986.CrossRefGoogle Scholar
[99] Peller, L. (1965) Matrix formulation of copolymerization statistics. II. Extensions to multimonomeric systems. J. Chem. Phys. 43, 23552363.CrossRefGoogle Scholar
[100] Pipkin, A. C. and Gibbs, J. H. (1966) Kinetics of synthesis and/or conformational changes in biological macromolecules. Biopolymers 4, 315.CrossRefGoogle Scholar
[101] Prékopa, A. (1954) Statistical treatment of the degradation process of long chain polymers. (In Hungarian). Magyar Tud. Akad. Alkalm. Mat. Int. Közl. 2, 103123.Google Scholar
[102] Prékopa, A. and Revesz, P. (1956) Mathematical treatment of the rearrangement of linear methylsilicone oils. (In Hungarian). Publ. Math. Inst. Hung. Acad. Sci. 1, 349356.Google Scholar
[103] Prékopa, A. and Török, F. (1956) Mathematical treatment of the rearrangement of linear methylsilicone oils. I. (In Hungarian). Publ. Math. Inst. Hung. Acad. Sci. 1, 6781.Google Scholar
[104] Price, F. P. (1962) Copolymerization mathematics and the description of stereoregular polymers. J. Chem. Phys. 36, 209218.CrossRefGoogle Scholar
[105] Rényi, A. (1954) Treatment of chemical reactions by means of the theory of stochastic processes. (In Hungarian). Magyar Tud. Akad. Alkalm. Mat. Int. Közl. 2, 93101.Google Scholar
[106] Rubin, R. J. and Shuler, K. E. (1956) Relaxation of vibrational nonequilibrium distributions. I. Collisional relaxation of a system of harmonic oscillators. J. Chem. Phys. 25, 5967.CrossRefGoogle Scholar
[107] Rubin, R. J. and Shuler, K. E. (1956) Relaxation of vibrational nonequilibrium distributions. II. The effect of the collisional transition probabilities on the relaxation behavior. J. Chem. Phys. 25, 6874.CrossRefGoogle Scholar
[108] Schaefgen, J. R. and Sarasohn, I. M. (1962) Observations on the thermolytic decomposition of poly (t-butyl acrylate). J. Polymer Sci. 58, 10491061.CrossRefGoogle Scholar
[109] Schwartz, G. (1965) On the kinetics of helix-coil transition of polypeptides in solution J. Mol. Biol, 11, 6477.CrossRefGoogle Scholar
[110] Shuler, K. E. (1957) Studies in nonequilibrium rate processes. II. The relaxation of vibrational non-equilibrium distributions in chemical reactions and shock waves. J. Phys. Chem. 61, 849856.CrossRefGoogle Scholar
[111] Shuler, K. E. and Weiss, G. H. (1963) Mean first passage times and the dissociation of diatomic molecules. J. Chem. Phys. 38, 505509.CrossRefGoogle Scholar
[112] Simha, R., Zimmerman, J. M., and Moacanin, J. (1963) Polymerization kinetics of biological macromolecules on templates. J. Chem. Phys. 39, 12391246.CrossRefGoogle ScholarPubMed
[113] Singer, K. (1953) Application of the theory of stochastic processes to the study of irreproducible chemical reactions and nucleation processes. J. R. Statist. Soc. B 15, 92106.Google Scholar
[114] Takács, L. (1962) Introduction to the Theory of Queues. Oxford Univ. Press. Oxford.Google Scholar
[115] Tanford, C. (1961) Physical Chemistry of Macromolecules. John Wiley & Sons, New York.Google Scholar
[116] Uhlenbeck, G. E. and Ornstein, L. S. (1930) On the theory of brownian motion. Phys. Rev. 36, 823841.CrossRefGoogle Scholar
[117] Van Hove, L. (1957) The approach to equilibrium in quantum statistics. Physica 23, 441480.CrossRefGoogle Scholar
[118] Wald, G. (1965) Visual excitation and blood clotting. Science 150, 10281030.CrossRefGoogle ScholarPubMed
[119] Wang, M. C. and Uhlenbeck, G. E. (1945) On the theory of brownian motion. II. Rev. Mod. Phys. 17, 323342.CrossRefGoogle Scholar
[120] Watson, J. D. (1965) Molecular Biology of the Gene. W. A. Benjamin, New York.Google Scholar
[121] Wax, N. ed. (1954) Selected Papers on Noise and Stochastic Processes. Dover, New York.Google Scholar
[122] Whittaker, E. T. and Watson, G. N. (1952) A Course in Modern Analysis. Cambridge Univ. Press, Cambridge.Google Scholar
[123] Whittle, P. (1965) Statistical processes of aggregation and polymerization. Proc. Camb. Phil. Soc. 61, 475–195.CrossRefGoogle Scholar
[124] Widom, B. (1962) Collision theory of chemical reaction rates. Adv. Chem. Phys. 5, 353386.Google Scholar
[125] Yguerabide, J., Dillon, M. A., and Burton, M. (1964) Kinetics of diffusion controlled processes in liquids. J. Chem. Phys. 40, 30403058.CrossRefGoogle Scholar
[126] Zimm, B. H. and Bragg, J. K. (1959) Theory of the phase transition between helix and random coil in polypeptide chains. J. Chem. Phys. 31, 526535.CrossRefGoogle Scholar
[127] Zimmerman, J. M. and Simha, R. (1965) The kinetics of multicenter growth along a template. J. Theoret. Biol. 9, 156185.CrossRefGoogle ScholarPubMed
[[128]] Zimmerman, J. M. and Simha, R. (1966) The kinetics of cooperative unwinding and template replication of biological macromolecules. J. Theoret. Biol. 13, 106130.CrossRefGoogle Scholar
Anderson, J. R., and Ritchie, I. M. (1967) A random walk theory for tarnishing reactions. Proc. Roy. Soc. 299A, 354.Google Scholar
Lengyel, B., Prékopa, A., and Török, F. (1956) Über Kinetik und Gleichgewicht der Equilibrierungs-Reaktion von linearen Methylpolysiloxanen. I. Z. für Phys. Chem. 206, 161.CrossRefGoogle Scholar
Lengyel, B., Prékopa, A., Révész, P., and Török, F. (1957) Über Kinetik und Gleichgewicht der Equilibrierungs-Reaktion von linearen Methylpolysiloxanen. II. Z. für Phys. Chem. 208, 33.CrossRefGoogle Scholar
Montroll, E. W. (1967) Stochastic processes in chemical kinetics. Energetics in Metallurgical Phenomena. 3, Gordon and Breach, New York.Google Scholar
Staff, P. J. (1967) Approximation method for equilibrium distributions in second-order chemical reaction kinetics. J. Chem. Phys. 46, 2209.CrossRefGoogle Scholar
Tanaka, M. (1967) Kinetics of photochemical reactions in RNA molecules. J. Phys. Soc. Japan. 22, 233.CrossRefGoogle Scholar
Teramoto, E., and Shigesada, N. (1967) Theory of bimolecular reaction processes in liquids. Progr. Theoret. Physics 37, 29.CrossRefGoogle Scholar