Published online by Cambridge University Press: 14 July 2016
We consider the inverse problem of estimating the input random field in a stochastic integral equation relating two random fields. The purpose of this paper is to present an approach to this problem using a Riesz-based or orthonormal-based series expansion of the input random field with uncorrelated random coefficients. We establish conditions under which the input series expansion induces (via the integral equation) a Riesz-based or orthonormal-based series expansion for the output random field. The estimation problem is studied considering two cases, depending on whether data are available from either the output random field alone, or from both the input and output random fields. Finally, we discuss this approach in the case of transmissivity estimation from piezometric head data, which was the original motivation of this work.