Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T18:43:26.454Z Has data issue: false hasContentIssue false

Semi-static variance-optimal hedging in stochastic volatility models with Fourier representation

Published online by Cambridge University Press:  01 October 2019

Paolo Di Tella*
Affiliation:
Technische Universität Dresden
Martin Haubold*
Affiliation:
Technische Universität Dresden
Martin Keller-Ressel*
Affiliation:
Technische Universität Dresden
*
* Postal address: Institut für Mathematische Stochastik, Technische Universität Dresden, 01062 Dresden, Germany.
* Postal address: Institut für Mathematische Stochastik, Technische Universität Dresden, 01062 Dresden, Germany.
* Postal address: Institut für Mathematische Stochastik, Technische Universität Dresden, 01062 Dresden, Germany.

Abstract

We introduce variance-optimal semi-static hedging strategies for a given contingent claim. To obtain a tractable formula for the expected squared hedging error and the optimal hedging strategy we use a Fourier approach in a multidimensional factor model. We apply the theory to set up a variance-optimal semi-static hedging strategy for a variance swap in the Heston model, which is affine, in the 3/2 model, which is not, and in a market model including jumps.

Type
Research Papers
Copyright
© Applied Probability Trust 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albrecher, H. Mayer, W., Schoutens, P. and Tistaert, J. (2007). The little Heston trap. Wilmott Magazine January, 8392.Google Scholar
Alfonsi, A. (2015). Affine Diffusions and Related Processes: Simulation, Theory and Applications. Springer, New York.Google Scholar
Bayraktar, E. and Zhou, Z. (2017). Super-hedging American options with semi-static trading strategies under model uncertainty. J. Finan. Math. 6, 425447.CrossRefGoogle Scholar
Beiglböck, M., Henry-Labordère, P. and Penkner, F. (2013). Model-independent bounds for option prices – a mass transport approach. Finance Stoch . 17, 477501.CrossRefGoogle Scholar
Bensoussan, A. and Elliott, R. J. (1995). Attainable claims in a Markov market. Math. Finance 5, 121131.CrossRefGoogle Scholar
Carr, P. (2011). Semi-static hedging of barrier options under Poisson jumps. Internat. J. Theor. Appl. Finance 14, 10911111.CrossRefGoogle Scholar
Carr, P. and Sun, J. (2007). A new approach for option pricing under stochastic volatility. Rev. Derivatives Res. 10, 87150.CrossRefGoogle Scholar
Colwell, D. B., Elliott, R. J. and Kopp, P. E. (1991). Martingale representation and hedging policies. Stoch. Process. Appl. 38, 335345.CrossRefGoogle Scholar
Di Tella, P., Haubold, M. and Keller-Ressel, M. (2017). Semi-static and sparse variance-optimal hedging. Preprint, arXiv:1709.05519.Google Scholar
Drimus, G. G. (2012). Options on realized variance by transform methods: A non-affine stochastic volatility model. Quant. Finance 12, 16791694.CrossRefGoogle Scholar
Elliott, R. J. and Kopp, P. E. (1990). Option pricing and hedge portfolios for Poisson processes. Stoch. Anal. Appl. 8, 157167.CrossRefGoogle Scholar
Föllmer, H. and Sondermann, D. (1986). Hedging of nonredundant contingent claims. In Contributions to Mathematical Economics, eds. Hildenbrand, W. and Mas-Colell, A.. North-Holland, Amsterdam, pp. 205223.Google Scholar
Grasselli, M. (2017). The 4/2 stochastic volatility model: A unified approach for the Heston and the 3/2 model. Math. Finance 27, 10131034.CrossRefGoogle Scholar
Heston, S. (1993). A closed-form solution of options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies 6, 327343.CrossRefGoogle Scholar
Hubalek, F., Kallsen, J. and Krawczyk, L. (2006). Variance-optimal hedging for processes with stationary independent increments. Ann. Appl. Prob. 16, 853885.CrossRefGoogle Scholar
Jacod, J. and Shiryaev, A. (2002). Limit Theorems for Stochastic Processes. Springer, New York.Google Scholar
Jeanblanc, M., Yor, M. and Chesney, M. (2009). Mathematical Methods for Financial Markets. Springer, New York.CrossRefGoogle Scholar
Kallsen, J. and Pauwels, A. (2010). Variance-optimal hedging in general affine stochastic volatility models. Adv. Appl. Prob. 42, 83105.CrossRefGoogle Scholar
Keller-Ressel, M. and Mayerhofer, E. (2015). Exponential moments of affine processes. Ann. Appl. Prob. 25, 714752.CrossRefGoogle Scholar
Lebedev, V. A. (1996). The Fubini theorem for stochastic integrals with respect to L 0-valued random measures depending on a parameter. Theory Prob. Appl . 40, 285293.CrossRefGoogle Scholar
Neuberger, A. (1994). The log contract. J. Portfolio Management 20, 7480.CrossRefGoogle Scholar
Schweizer, M. (1991). Option hedging for semimartingales. Stoch. Process. Appl. 37, 339363.CrossRefGoogle Scholar
Schweizer, M. (2001). A guided tour through quadratic hedging approaches. In Option Pricing, Interest Rates and Risk Management, eds. Jouini, E., Cvitanic, J. and Musiela, M.. Cambridge University Press, pp. 538574.CrossRefGoogle Scholar
Stricker, C. and Yor, M. (1978). Calcul stochastique dépendant d’un paramètre. Z. Wahrscheinlichkeitsth. 45, 109133.CrossRefGoogle Scholar