Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T19:41:36.997Z Has data issue: false hasContentIssue false

Search schemes for random optimization algorithms that preserve the asymptotic distribution

Published online by Cambridge University Press:  14 July 2016

Chang C. Y. Dorea*
Affiliation:
Universidade de Brasília
Cátia R. Gonçalves*
Affiliation:
Universidade Estadual Paulista
*
Postal address: Departamento de Matemática, Universidade de Brasília, Caixa Postal 04322, 70910–900 Brasília, Brasil. Email address: [email protected]
∗∗Postal address: Departmento de Matemática, Universidade Estadual Paulista, 19060–900 Presdidente Prudente, Saō Paulo, Brasil. Research partially supported by CNPq-Brazil.

Abstract

Markovian algorithms for estimating the global maximum or minimum of real valued functions defined on some domain Ω ⊂ ℝd are presented. Conditions on the search schemes that preserve the asymptotic distribution are derived. Global and local search schemes satisfying these conditions are analysed and shown to yield sharper confidence intervals when compared to the i.i.d. case.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1999 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boender, G. Rinnoy Kan, A., Stougie, L., and Timmer, G. (1982). A stochastic method for global optimization. Math. Prog. 22, 125140.CrossRefGoogle Scholar
Dekkers, A., and Aarts, E. (1991). Global optimization and simulated annealing. Math. Prog. 50, 367393.CrossRefGoogle Scholar
Devroye, L. (1978). Progressive global random search of continuous function. Math. Prog. 15, 330342.CrossRefGoogle Scholar
Dorea, C. C. Y. (1986). Limiting distribution for random optimization method. SIAM: J. Control Optim. 24, 7682.Google Scholar
Dorea, C. C. Y. (1987). Estimation of the extreme value and the extreme points. Ann. Inst. Statist. Math. 39, 3748.CrossRefGoogle Scholar
Dorea, C. C. Y. (1990). Stopping rules for a random optimization method. SIAM: J. Control Optim. 28, 841850.Google Scholar
Dorea, C. C. Y., and Miazaki, E. S. (1992). Parameter free limiting distribution for a random optimization algorithm. Comput. Statist. Data Anal. 14, 391399.CrossRefGoogle Scholar
Galambos, J. (1978). The Asymptotic Theory of Extreme Order Statistics. Wiley, New York.Google Scholar
Gonçalves, C. R. (1995). Algoritmos de Busca Aleatória para Otimização Global : Estratégias de Busca que Preservam a Distribuição Assintótica, , Departamento de Matemática, Universidade de Brasilia, Brasil.Google Scholar
de Haan, L. (1981). Estimation of the minimum of a function using order statistics. J. Amer. Statist. Assoc. 79, 467469.CrossRefGoogle Scholar
Leadbetter, M. R., Lindgreen, G. and Rootzén, H. (1983). Extremes and Related Properties of Random Sequences and Processes. Springer, New York.CrossRefGoogle Scholar
Palosaari, S. M., Parviaienen, S. Hüronen, J., Reunanen, J., and Neittaanmaki, P. (1986). A random search algorithm for constrained global optimization. Acta Polytech. Scand. Chem. Technol. Metall. Ser. 172, 143.Google Scholar
Resnick, S. J. (1987). Extreme Values, Regular Variation and Point Processes. Springer, Berlin.CrossRefGoogle Scholar
RinnooyKan, A. H. G., and Timmer, G. T. (1987). Stochastic global optimization methods I: clustering methods. Math. Prog. 39, 2756.CrossRefGoogle Scholar
Solis, F. J., and Wets, R. J. B. (1981). Minimization by random search techiniques. Math. Operat. Res. 6, 1930.CrossRefGoogle Scholar
Weissman, I. (1981). Confidence intervals for the threshold parameter. Commun. Statist.: Theory Meth. 10, 549557.CrossRefGoogle Scholar
Weissman, I. (1982). Confidence intervals for the threshold parameter II: unknown shape parameter. Commun. Statist.: Theory Meth. 11, 24512474.CrossRefGoogle Scholar
Zhigljavsky, A. A. (1991). Theory of Global Random Search. Kluwer, Dordrecht.CrossRefGoogle Scholar