Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-22T17:03:24.175Z Has data issue: false hasContentIssue false

A representation of a discrete distribution by its binomial moments

Published online by Cambridge University Press:  14 July 2016

Andreas Brandt
Affiliation:
Humboldt-Universität zu Berlin
Manfred Brandt
Affiliation:
Humboldt-Universität zu Berlin
Hannelore Sulanke*
Affiliation:
Humboldt-Universität zu Berlin
*
Postal address: Sektion Mathematik, Humboldt-Universität zu Berlin, PSF 1297, 1086 Berlin, German Democratic Republic.

Abstract

Let pk, k ≧ 0, be a probability distribution having finite binomial moments Br, r ≧ 0, and the probability generating function U(z) with a radius of convergence α (≧ 1). In this note explicit and recursive formulae are derived allowing computation of the pk in terms of the Br if α > 1. Ch. Jordan's formula, which holds if α > 2, turns out to be a special case.

Type
Short Communications
Copyright
Copyright © Applied Probability Trust 1990 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Brandt, A., Brandt, M. and Sulanke, H. (1988) A generalization of Ch. Jordan's formula and its application to the GIGI/M/8 queue. Preprint Nr. 189, Sektion Mathematik, Humboldt-Universität, Berlin.Google Scholar
[2] Brandt, A., Franken, P. and Lisek, B. (1989) Stationary Stochastic Models. Akademie-Verlag, Berlin.Google Scholar
[3] Brandt, A. and Sulanke, H. (1987) On the GI/M/8 queue with batch arrivals of constant size. Queueing Systems 2, 187200.Google Scholar
[4] Gastwirth, J. L. (1964) On a telephone traffic system with several kinds of service distributions. J. Appl. Prob. 1, 7784.Google Scholar
[5] Gnedenko, B. W. and König, D., (eds.) (1984) Handbuch der Bedienungstheorie, Vol. II. Akademie-Verlag, Berlin.Google Scholar
[6] Takács, L. (1956) On the generalization of Erlang's formula. Acta Math. Acad. Sci. Hung. 7, 419433.Google Scholar
[7] Takács, L. (1958) On a general probability theorem and its application in the theory of the stochastic processes. Proc. Camb. Phil. Soc. 54, 219224.Google Scholar
[8] Takács, L. (1962) Theory of Queues. Oxford University Press, New York.Google Scholar
[9] Wallström, B. (1967) Congestion Studies in Telephone Systems with Overflow Facilities. Ph.D. Dissertation, Kungl. Tekniska Högskolan, Stockholm.Google Scholar
[10] Takács, L. (1965) A moment problem. J. Austral. Math. Soc. A5, 487490.CrossRefGoogle Scholar