Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T13:45:40.795Z Has data issue: false hasContentIssue false

Random population dynamics under catastrophic events

Published online by Cambridge University Press:  15 August 2022

Patrick Cattiaux*
Affiliation:
Université de Toulouse
Jens Fischer*
Affiliation:
Université de Toulouse and Universität Potsdam
Sylvie Rœlly*
Affiliation:
Universität Potsdam
Samuel Sindayigaya*
Affiliation:
Institut d’Enseignement Supérieur de Ruhengeri
*
*Postal address: Institut de Mathématiques de Toulouse, CNRS UMR 5219, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France. Email address: [email protected]
**Postal address: Institut de Mathématiques de Toulouse, CNRS UMR 5219, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France; Institut für Mathematik der Universität Potsdam, Karl-Liebknecht-Str. 24–25, 14476 Potsdam OT Golm, Germany. Email address: [email protected]
***Postal address: Institut für Mathematik der Universität Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam OT Golm, Germany. Email address: [email protected]
****Postal address: Institut d’Enseignement Supérieur de Ruhengeri, Musanze Street NM 155, PO Box 155, Ruhengeri, Rwanda. Email address: [email protected]

Abstract

In this paper we introduce new birth-and-death processes with partial catastrophe and study some of their properties. In particular, we obtain some estimates for the mean catastrophe time, and the first and second moments of the distribution of the process at a fixed time t. This is completed by some asymptotic results.

Type
Original Article
Copyright
© The Author(s), 2022. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, W. J. (1991). Continuous-Time Markov chains. Springer.CrossRefGoogle Scholar
Brockwell, P. J. (1985). The extinction time of a birth, death and catastrophe process and of a related diffusion model. Adv. Appl. Prob. 17, 4252.CrossRefGoogle Scholar
Brockwell, P. J. (1986). The extinction time of a general birth and death process with catastrophes. J. Appl. Prob. 23, 851858.CrossRefGoogle Scholar
Brockwell, P. J., Gani, J. M. and Resnick, S. I. (1982). Birth, immigration and catastrophe processes. Adv. Appl. Prob. 14, 709731.CrossRefGoogle Scholar
Di Crescenzo, A., Giorno, V., Nobile, A. G. and Ricciardi, L. M. (2008). A note on birth–death processes with catastrophes. Statist. Prob. Lett. 78, 22482257.CrossRefGoogle Scholar
Feller, W. (1939). Die Grundlagen der volterraschen Theorie des Kampfes ums dasein in wahrscheinlichkeitstheoretischer Behandlung. Acta Bioth. Ser. A. 5, 1140.Google Scholar
Hall, H. S. and Knight, S. R. (1891). Higher Algebra: A Sequel to Elementary Algebra for Schools, 1st edn. Macmillan, London; St Martin’s Press, New York. Available at https://archive.org/details/higheralgebraseq00hall.Google Scholar
Kapodistria, S., Tuan, P.-D. and Resing, J. (2016). Linear birth/immigration-death process with binomial catastrophes. Prob. Eng. Inf. Sci. 30, 79111.CrossRefGoogle Scholar
Karlin, S. and McGregor, J. (1958). Linear growth, birth and death processes. J. Math. Mech. 7, 643662.Google Scholar
Kendall, D. G. (1948). On the generalized birth-and-death process. Ann. Math. Statist. 19, 115.Google Scholar
Meyn, S. and Tweedie, R. L. A survey of Foster–Lyapunov techniques for general state space Markov processes. Available at http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.43.2517.Google Scholar
Norris, J. R. (1997). Markov Chains. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Sindayigaya, S. (2016). The population mean and its variance in the presence of genocide for a simple birth–death–immigration–emigration process using the probability generating function. Internat. J. Statist. Anal. 6, 18.Google Scholar
Swift, R. J. (2001). Transient probabilities for a simple birth–death–immigration process under the influence of total catastrophes. Internat. J. Math. Math. Sci. 25, 689692.CrossRefGoogle Scholar
van Doorn, E. A. and Zeifman, A. I. (2005). Birth–death processes with killing. Statist. Prob. Lett. 72, 3342.CrossRefGoogle Scholar
van Doorn, E. A. and Zeifman, A. I. (2005). Extinction probability in a birth–death process with killing. J. Appl. Prob. 42, 185198.Google Scholar