Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T15:18:16.905Z Has data issue: false hasContentIssue false

A quantum-mechanical central limit theorem for anti-commuting observables

Published online by Cambridge University Press:  14 July 2016

R. L. Hudson*
Affiliation:
University of Nottingham

Abstract

A quantum-mechanical central limit theorem for sums of pairwise anti-commuting representations of the canonical anti-commutation relations over a finite-dimensional space is formulated and proved.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1973 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Araki, H. (1969) Factorizable representation of current algebra. Publ. Res. Inst. Math. Sci. (Kyoto) 5, 361422.10.2977/prims/1195194390Google Scholar
[2] Brauer, R. and Weyl, H. (1935) Spinors in n dimensions. Amer. J. Math. 57, 425449.10.2307/2371218Google Scholar
[3] Cushen, C. D. and Hudson, R. L. (1971) A quantum mechanical central limit theorem. J. Appl. Prob. 8, 454469.10.2307/3212170Google Scholar
[4] Mathon, D. and Streater, R. F. (1971) Infinitely divisible representations of Clifford algebras. Z. Wahrscheinlichkeitsth. 20, 308316.Google Scholar
[5] Von Neumann, J. (1935) On infinite direct products. Compositio Math. 6, 177.Google Scholar
[6] Powers, R. T. (1967) Representations of the canonical anticommutation relations. , Princeton.Google Scholar
[7] Streater, R. F. (1971) Infinitely divisible representations of Lie algebras. Z. Wahrscheinlichkeitsth. 19, 6780.10.1007/BF01111210Google Scholar