Hostname: page-component-669899f699-2mbcq Total loading time: 0 Render date: 2025-05-05T11:59:08.249Z Has data issue: false hasContentIssue false

Pricing and hedging for a sticky diffusion

Published online by Cambridge University Press:  28 April 2025

Alexis Anagnostakis*
Affiliation:
Université Grenoble-Alpes, CNRS, LJK
*
*Postal address: Laboratoire Jean Kuntzmann, 150 Pl. du Torrent, 38400 Saint-Martin-d’Hères, France. Email: [email protected]

Abstract

We introduce a financial market model featuring a risky asset whose price follows a sticky geometric Brownian motion and a riskless asset that grows with a constant interest rate $r\in \mathbb R$. We prove that this model satisfies no arbitrage and no free lunch with vanishing risk only when $r=0$. Under this condition, we derive the corresponding arbitrage-free pricing equation, assess the replicability, and give a representation of the replication strategy. We then show that all locally bounded replicable payoffs for the standard Black–Scholes model are also replicable for the sticky model. Last, we evaluate via numerical experiments the impact of hedging in discrete time and of misrepresenting price stickiness.

Type
Original Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Applied Probability Trust

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Almgren, R. and Chriss, N. (2001). Optimal execution of portfolio transactions. J. Risk 3, 540.CrossRefGoogle Scholar
Amir, M. (1991). Sticky Brownian motion as the strong limit of a sequence of random walks. Stoch. Process. Appl. 39, 221237.CrossRefGoogle Scholar
Anagnostakis, A. (2022). Path-wise study of singular diffusions. PhD thesis, Université de Lorraine (Nancy).Google Scholar
Anagnostakis, A. (2023). Functional convergence to the local time of a sticky diffusion. Electron. J. Prob. 28, 126.CrossRefGoogle Scholar
Anagnostakis, A., Lejay, A. and Villemonais, D. (2023). General diffusion processes as limit of time–space Markov chains. Ann. Appl. Prob. 33, 36203651.CrossRefGoogle Scholar
Bakshi, G., Cao, C. and Chen, Z. (1997). Empirical performance of alternative option pricing models. J. Finance 52, 20032049.CrossRefGoogle Scholar
Bass, R. F. (2014). A stochastic differential equation with a sticky point. Electron. J. Prob. 19, 22.CrossRefGoogle Scholar
Bates, D. S. (1996). Jumps and stochastic volatility: Exchange rate processes implicit in Deutsche Mark options. Rev. Financial Studies 9, 69107.CrossRefGoogle Scholar
Bayer, C., Friz, P. and Gatheral, J. (2016). Pricing under rough volatility. Quant. Finance 16, 887904.CrossRefGoogle Scholar
Bertsimas, D., Kogan, L. and Lo, A. W. (2001). When is time continuous? In Quantitative Analysis in Financial Markets. Collected Papers of the New York University Mathematical Finance Seminar, Vol. II, ed. M. Avellaneda. World Scientific, Singapore, pp. 71102.Google Scholar
Black, F. and Scholes, M. (1973). The pricing of options and corporate liabilities. J. Political Econom. 81, 637654.CrossRefGoogle Scholar
Borodin, A. N. and Salminen, P. (1996). Handbook of Brownian Motion: Facts and Formulae. Birkhäuser, Basel.CrossRefGoogle Scholar
Bou-Rabee, N. and Holmes-Cerfon, M. C. (2020). Sticky Brownian motion and its numerical solution. SIAM Rev. 62, 164195.CrossRefGoogle Scholar
Brooks, J. and Chacon, R. (1992). Weak convergence of diffusions, their speed measures and time changes. Adv. Math. 46, 200216.CrossRefGoogle Scholar
Bruggeman, C. and Ruf, J. (2016). A one-dimensional diffusion hits points fast. Electron. Commun. Prob. 21, 17.CrossRefGoogle Scholar
Buckner, D., Dowd, K. and Hulley, H. (2024). Arbitrage problems with reflected geometric Brownian motion. Finance Stoch. 28, 126.CrossRefGoogle Scholar
Calsina, A. and Farkas, J. Z. (2012). Steady states in a structured epidemic model with Wentzell boundary condition. J. Evol. Equ. 12, 495512.CrossRefGoogle Scholar
Corns, T. R. A. and Satchell, S. E. (2007). Skew Brownian motion and pricing European options. Europ. J. Finance 13, 523544.CrossRefGoogle Scholar
Criens, D. (2023). On the Feller–Dynkin and the martingale property of one-dimensional diffusions. Electron. Commun. Prob. 28, 20.CrossRefGoogle Scholar
Criens, D. and Urusov, M. (2022). Separating times for one-dimensional diffusions. Preprint, arXiv:2211.06042.Google Scholar
Criens, D. and Urusov, M. (2024). On the representation property for 1D general diffusion semimartingales. Theory Prob. Appl. 69, 579591.CrossRefGoogle Scholar
Davies, M. J. and Truman, A. (1994). Brownian motion with a sticky boundary and point sources in quantum mechanics. Math. Comput. Modelling 20, 173193.CrossRefGoogle Scholar
Decamps, M., De Schepper, A. and Goovaerts, M. (2004). Applications of $\delta$ -function perturbation to the pricing of derivative securities. Physica A 342, 677692.CrossRefGoogle Scholar
Delbaen, F. and Schachermayer, W. (1994). A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463520.CrossRefGoogle Scholar
Delbaen, F. and Schachermayer, W. (2006). The Mathematics of Arbitrage. Springer, Berlin.Google Scholar
Dupire, B. (1994). Pricing with a smile. Risk 7, 1820.Google Scholar
Dupire, B. (1997). Pricing and hedging with smiles. In Mathematics of Derivative Securities, eds M. A. H. Dempster and S. R. Pliska. Cambridge University Press, pp. 103111.Google Scholar
Engelbert, H. J. and Peskir, G. (2014). Stochastic differential equations for sticky Brownian motion. Stochastics 86, 9931021.CrossRefGoogle Scholar
Feller, W. (1952). The parabolic differential equations and the associated semigroups of transformation. Ann. Math. 55, 468519.CrossRefGoogle Scholar
Feng, R., Jiang, P. and Volkmer, H. (2020). Modeling financial market movement with winning streaks: Sticky maximum process. Preprint, https://doi.org/10.2139/ssrn.3553389.CrossRefGoogle Scholar
Freedman, D. (1983). Brownian Motion and Diffusion, 2nd edn. Springer, New York.CrossRefGoogle Scholar
Gatheral, J. Jaisson, T. and Rosenbaum, M. (2018). Volatility is rough. Quant. Finance 18, 933949.CrossRefGoogle Scholar
Hagan, P. S., Kumar, D., Lesniewski, A. S. and Woodward, D. E. (2002). Managing smile risk. In The Best of Wilmott, Vol. 1, ed P. Wilmott. Wiley, John, Chichester, pp. 249296.Google Scholar
Heston, S. L. (1993). A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financial Studies 6, 327343.CrossRefGoogle Scholar
Hull, J. and White, A. (1987). The pricing of options on assets with stochastic volatilities. J. Finance 42, 281300.CrossRefGoogle Scholar
Jacod, J. and Shiryaev, A. N. (2003). Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin.CrossRefGoogle Scholar
Kabanov, Y. M. and Safarian, M. (2009). Markets with Transaction Costs: Mathematical Theory. Springer, Berlin.Google Scholar
Kallenberg, O. (2002). Foundations of Modern Probability, 2nd edn. Springer, New York.CrossRefGoogle Scholar
Karatzas, I. and Kardaras, C. (2007). The numéraire portfolio in semimartingale financial markets. Finance Stoch. 11, 447493.CrossRefGoogle Scholar
Leland, H. E. (1985). Option pricing and replication with transactions costs. J. Finance 40, 12831301.CrossRefGoogle Scholar
Nie, Y. and Linetsky, V. (2019). Sticky reflecting Ornstein–Uhlenbeck diffusions and the Vasicek interest rate model with the sticky zero lower bound. Stoch. Models, 36, 119.CrossRefGoogle Scholar
Revuz, D. and Yor, M. (1999). Continuous Martingales and Brownian Motion, 3rd edn. Springer, Berlin.CrossRefGoogle Scholar
Rogers, L. C. G. and Williams, D. (2000). Diffusions, Markov Processes, and Martingales, Vol. 2. Cambridge University Press.Google Scholar
Rossello, D. (2012). Arbitrage in skew Brownian motion models. Insurance Math. Econom. 50, 5056.CrossRefGoogle Scholar
Salins, M. and Spiliopoulos, K. (2017). Markov processes with spatial delay: Path space characterization, occupation time and properties. Stoch. Dynamics 17, 1750042.CrossRefGoogle Scholar
Scott, L. O. (1987). Option pricing when the variance changes randomly: Theory, estimation, and an application. J. Financial Quant. Anal. 22, 419438.CrossRefGoogle Scholar
Shreve, S. E. (2004). Stochastic Calculus for Finance II: Continuous-Time Models. Springer, New York.CrossRefGoogle Scholar
Stein, E. M. and Stein, J. C. (1991). Stock price distributions with stochastic volatility: An analytic approach. Rev. Financial Studies 4, 727752.CrossRefGoogle Scholar
Stell, G. (1991). Sticky spheres and related systems. J. Statist. Phys. 63, 12031221.CrossRefGoogle Scholar
Zhang, H. and Tian, Y. (2022). Hitting time problems of sticky Brownian motion and their applications in optimal stopping and bond pricing. Methodol. Comput. Appl. Prob. 24, 06.CrossRefGoogle Scholar
Zhu, J. Y. (2013). Optimal contracts with shirking. Rev. Econom. Stud. 80, 812839.CrossRefGoogle Scholar