Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-20T02:39:07.810Z Has data issue: false hasContentIssue false

Optimal stopping and embedding

Published online by Cambridge University Press:  14 July 2016

Damien Lamberton*
Affiliation:
Université de Marne-la-Vallée
L. C. G. Rogers*
Affiliation:
University of Bath
*
Postal address: Université de Marne-la-Vallée, Equipe d'Analyse et de Mathématiques Appliquées, 5 Boulevard Descartes, Cité Descartes, Champs-sur-Marne, 77 454 Marne-la-Vallée Cedex 2, France. Email address: [email protected]
∗∗ Postal address: School of Mathematical Sciences, University of Bath, Claverton Down, Bath BA2 7AY, UK.

Abstract

We use embedding techniques to analyse the error of approximation of an optimal stopping problem along Brownian paths when Brownian motion is approximated by a random walk.

Type
Short Communications
Copyright
Copyright © by the Applied Probability Trust 2000 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Aldous, D. (1979). Extended weak convergence. Unpublished manuscript.Google Scholar
[2] Kushner, H. J. (1977). Probability Methods for Approximations in Stochastic Control and for Elliptic Equations. Academic Press, New York.Google Scholar
[3] Lamberton, D. and Pagès, G. (1990). Sur l'approximation des réduites. Ann. Inst. H. Poincaré Prob. Statist. 26, 331355.Google Scholar
[4] Lamberton, D. (1998). Error estimates for the binomial approximation of American put options. Ann. Appl. Prob. 8, 206233.Google Scholar
[5] Lamberton, D. (1999). Brownian optimal stopping and random walks. Preprint, Université de Marne-la-Vallée.Google Scholar
[6] Neveu, J. (1975). Discrete-parameter Martingales. North Holland, Amsterdam.Google Scholar
[7] Revuz, A., and Yor, M. (1994). Continuous Martingales and Brownian Motion, 2nd edn. Springer, Berlin.Google Scholar
[8] Rogers, L. C. G., and Williams, D. (1994). Diffusions, Markov Processes and Martingales, Vol. 2, John Wiley, New York.Google Scholar