Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T16:29:38.969Z Has data issue: false hasContentIssue false

On the multifractal analysis of the covering number on the Galton–Watson tree

Published online by Cambridge University Press:  12 July 2019

Najmeddine Attia*
Affiliation:
Faculté des Sciences de Monastir
*
*Postal address: Department Mathématiques, Faculté des Sciences de Monastir, Avenue de l’Environment 5000, Monastir, Tunisia. Email address: [email protected]

Abstract

We consider, for t in the boundary of a Galton–Watson tree $(\partial \textsf{T})$, the covering number $(\textsf{N}_n(t))$ by the generation-n cylinder. For a suitable set I and sequence (sn), we almost surely establish the Hausdorff dimension of the set $\{ t \in \partial {\textsf{T}}:{{\textsf{N}}_n}(t) - nb \ {\sim} \ {s_n}\} $ for bI.

Type
Research Papers
Copyright
© Applied Probability Trust 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Attia, N. (2012). Comportement asymptotique de marches aléatoires de branchement dans ℝd et dimension de Hausdorff. Doctoral Thesis, Universitt’e Paris-Nord XIII.Google Scholar
Attia, N. (2014). On the multifractal analysis of the branching random walk in ℝd. J. Theoret. Prob. 27, 13291349.10.1007/s10959-013-0488-xCrossRefGoogle Scholar
Attia, N. and Barral, J. (2014). Hausdorff and packing spectra, large deviations and free energy for branching random walks in ℝd. Commun. Math. Phys. 331, 139187.CrossRefGoogle Scholar
Barral, J. (2000). Continuity of the multifractal spectrum of a random statistically self-similar measure. J. Theoret. Prob. 13, 10271060.CrossRefGoogle Scholar
Biggins, J. D. (1977). Martingale convergence in the branching random walk. J. Appl. Prob. 14, 2537.CrossRefGoogle Scholar
Biggins, J. D. (1992). Uniform convergence of martingales in the branching random walk. Ann. Prob. 20, 137151.CrossRefGoogle Scholar
Biggins, J. D., Hambly, B. M. and Jones, O. D. (2011). Multifractal spectra for random self-similar measures via branching processes. Adv. Appl. Prob. 43, 139.10.1239/aap/1300198510CrossRefGoogle Scholar
Falconer, K. J. (1994). The multifractal spectrum of statistically self-similar measures. J. Theoret. Prob. 7, 681702.CrossRefGoogle Scholar
Falconer, K. (2003). Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. John Wiley, Hoboken, NJ.Google Scholar
Fan, A. H. (1994). Sur les dimensions de mesures. Studia Math. 111, 117.CrossRefGoogle Scholar
Fan, A. H. and Kahane, J. P. (2001). How many intervals cover a point in random dyadic covering? Port. Math. 58, 5975.Google Scholar
Holley, R. and Waymire, E. C. (1992). Multifractal dimensions and scaling exponents for strongly bounded random cascades. Ann. Appl. Prob. 2, 819845.10.1214/aoap/1177005577CrossRefGoogle Scholar
Kahane, J.-P. and Peyriére, J. (1976). Sur certaines martingales de Benoit Mandelbrot. Adv. Math. 22, 131145.CrossRefGoogle Scholar
Lyons, R. (1990). Random walks and percolation on trees. Ann. Prob. 8, 931958.CrossRefGoogle Scholar
Lyons, R. and Pemantle, R. (1992). Random walk in a random environment and first-passage percolation on trees. Ann. Prob. 20, 125136.CrossRefGoogle Scholar
Liu, Q. and Rouault, A. (1997). On two measures defined on the boundary of a branching tree (IMA Vol. Math. Appl. 84). Springer, New York, pp. 187201.Google Scholar
Molchan, G. M. (1996). Scaling exponents and multifractal dimensions for independent random cascades. Commun. Math. Phys. 179, 681702.CrossRefGoogle Scholar
Peyriére, J. (1977). Calculs de dimensions de Hausdorff. Duke Math. J. 44, 591601.CrossRefGoogle Scholar