Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-18T18:05:57.906Z Has data issue: false hasContentIssue false

On the distribution and moments of the strength of a bundle of filaments

Published online by Cambridge University Press:  14 July 2016

M. W. Suh
Affiliation:
Burlington Industries Inc., Greensboro, N. C.
B. B. Bhattacharyya
Affiliation:
North Carolina State University
A. Grandage
Affiliation:
North Carolina State University

Summary

Small sample and large sample properties of the bundle strength of parallel filaments studied earlier by Daniels (1945) and Sen, Bhattacharyya, Suh (1969) have been developed here by probabilistic argument. The statistics belong to a family or class of statistics, each of which forms a reverse semi-martingale sequence. Certain moment properties are also discussed.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1970 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Daniels, H. E. (1945) The statistical theory of the strength of bundles of threads. Proc. Roy. Soc. A 183, 405435.Google Scholar
[2] Doob, J. L. (1953) Stochastic Processes. Wiley, New York.Google Scholar
[3] Loève, M. (1963) Probability Theory. D. van Nostrand Co., Inc., New York.Google Scholar
[4] Schmid, P. (1958) On the Kolomogorov and Smirnov limit theorems for discontinuous distribution functions. Ann. Math. Statist. 29, 10111027.CrossRefGoogle Scholar
[5] Sen, P. K., Bhattacharyya, B. B. and Suh, M. W. (1969) Limiting behaviour of the extremum of certain sample functions. Mimeo Series No. 628. Institute of Statistics. Consolidated University of North Carolina. (Submitted for publication.).Google Scholar
[6] Tucker, H. G. (1967) A Graduate Course in Probability. Academic Press, New York and London.Google Scholar