Published online by Cambridge University Press: 14 July 2016
In this article we give some characterizations of Poisson processes, the model which we consider is inspired by Kimeldorf and Thall (1983) and we generalize the results of Chandramohan and Liang (1985). More precisely, we consider an arbitrarily delayed renewal process, at each arrival time we allow the number of arrivals to be i.i.d. random variables, also the mass of each unit atom can be split into k new atoms with the ith new atom assigned to the process Di, i = 1, ···, k. We shall show that the existence of a pair of uncorrelated processes Di, Dj, i ≠ j, implies the renewal process is Poisson. Some other related characterization results are also obtained.
This research was supported by the National Science Council under the Grant NSC-76-0208-M110-03.