Published online by Cambridge University Press: 11 December 2019
Let $\{X_{\textbf{n}} \colon \textbf{n}\in{\mathbb Z}^d\}$ be a weakly dependent stationary random field with maxima $M_{A} :=, \sup\{X_{\textbf{i}} \colon \textbf{i}\in A\}$ for finite $A\subset{\mathbb Z}^d$ and $M_{\textbf{n}} := \sup\{X_{\textbf{i}} \colon \mathbf{1} \leq \textbf{i} \leq \textbf{n} \}$ for $\textbf{n}\in{\mathbb N}^d$ . In a general setting we prove that ${\mathbb{P}}(M_{(N_1(n),N_2(n),\ldots, N_d(n))} \leq v_n)$ $= \exp(\!- n^d {\mathbb{P}}(X_{\mathbf{0}} > v_n , M_{A_n} \leq v_n)) + {\text{o}}(1)$ for some increasing sequence of sets $A_n$ of size $ {\text{o}}(n^d)$ , where $(N_1(n),N_2(n), \ldots,N_d(n))\to(\infty,\infty, \ldots, \infty)$ and $N_1(n)N_2(n)\cdots N_d(n)\sim n^d$ . The sets $A_n$ are determined by a translation-invariant total order $\preccurlyeq$ on ${\mathbb Z}^d$ . For a class of fields satisfying a local mixing condition, including m-dependent ones, the main theorem holds with a constant finite A replacing $A_n$ . The above results lead to new formulas for the extremal index for random fields. The new method for calculating limiting probabilities for maxima is compared with some known results and applied to the moving maximum field.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.