Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T03:13:40.812Z Has data issue: false hasContentIssue false

A note on stochastic comparisons of excess lifetimes of renewal processes

Published online by Cambridge University Press:  14 July 2016

Félix Belzunce*
Affiliation:
Universidad de Murcia
Eva M. Ortega*
Affiliation:
Universidad Miguel Hernández
José M. Ruiz*
Affiliation:
Universidad de Murcia
*
Postal address: Departamento de Estadística e Investigación Operativa, Universidad de Murcia, 30100 Espinardo, Murcia, Spain.
∗∗∗ Postal address: Centro de Investigación Operativa, Universidad Miguel Hernández, Campus La Gal·lia, Av. Ferrocarril s/n, 03202 Elche, Alicante, Spain.
Postal address: Departamento de Estadística e Investigación Operativa, Universidad de Murcia, 30100 Espinardo, Murcia, Spain.

Abstract

In this paper we provide new results about stochastic comparisons of the excess lifetime at different times of a renewal process when the interarrival times belong to several ageing classes. We also provide a preservation result for the new better than used in the Laplace transform order ageing class for series systems.

Type
Short Communications
Copyright
Copyright © by the Applied Probability Trust 2001 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Supported by Ministerio de Ciencia y Tecnologia under grant BFM2000-0362.

References

Abouammoh, A., and El-Neweihi, E. (1986). Closure of the NBUE and DMRL classes under formation of parallel systems. Statist. Prob. Lett. 4, 223225.Google Scholar
Alzaid, A., Kim, J. S., and Proschan, F. (1991). Laplace ordering and its applications. J. Appl. Prob. 28, 116130.Google Scholar
Barlow, R. E., and Proschan, F. (1975). Statistical Theory of Reliability and Life Testing. Holt, Rinehart and Winston, New York.Google Scholar
Belzunce, F., Ortega, E., and Ruiz, J. M. (1999). The Laplace order and ordering of residual lives. Statist. Prob. Lett. 42, 145156.Google Scholar
Brown, M. (1980). Bounds, inequalities, and monotonicity properties for some specialized renewal processes. Ann. Prob. 8, 227240.Google Scholar
Brown, M. (1981). Further monotonicity properties for specialized renewal processes. Ann. Prob. 9, 891895.Google Scholar
Cao, J., and Wang, Y. (1991). The NBUC and NWUC classes of life distributions. J. Appl. Prob. 28, 473479.Google Scholar
Chen, Y. (1994). Classes of life distributions and renewal counting process. J. Appl. Prob. 31, 11101115.Google Scholar
Deshpande, J. V., Kochar, S. C., and Singh, H. (1986). Aspects of positive ageing. J. Appl. Prob. 23, 748758.Google Scholar
Franco, M., Ruiz, J. M., and Ruiz, M. C. (2001). On closure of IFR(2) and NBU(2) classes. J. Appl. Prob. 38, 235241.Google Scholar
Hendi, M. I., Mashhour, A. F., and Montasser, M. A. (1993). Closure of the NBUC class under formation of parallel systems. J. Appl. Prob. 30, 975978.Google Scholar
Karlin, S., and Taylor, H. M. (1975). A First Course in Stochastic Processes, 2nd edn. Academic Press, New York.Google Scholar
Klefsjö, B., (1983). A useful ageing property based on the Laplace transform. J. Appl. Prob. 20, 615626.Google Scholar
Li, X., and Kochar, S. C. (2001). Some new results involving the NBU(2) class of life distributions. J. Appl. Prob. 38, 242247.Google Scholar
Li, X., Li, Z., and Jing, B. (2000). Some results about NBUC class of life distributions. Statist. Prob. Lett. 46, 229237.Google Scholar
Pellerey, F., and Petakos, K. (1999). On closure property of the NBUC class under formation of parallel systems. Tech. Rept, Politecnico di Torino.Google Scholar
Shaked, M., and Shanthikumar, J. G. (1994). Stochastic Orders and Their Applications. Academic Press, New York.Google Scholar
Shaked, M., and Wong, T. (1997). Stochastic orders based on ratios of Laplace transforms. J. Appl. Prob. 34, 404419.Google Scholar
Shaked, M., and Zhu, H. (1992). Some results on block replacement policies and renewal theory. J. Appl. Prob. 29, 932946.Google Scholar