Article contents
A note on first-passage time and some related problems
Published online by Cambridge University Press: 14 July 2016
Abstract
Expansions for the first-passage-time p.d.f. through a constant boundary and for its Laplace transform are derived in terms of probability currents for a temporally homogeneous diffusion process. Ultimate absorption and recurrence problems are also considered. The moments of the first-passage time are finally explicitly obtained.
Keywords
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 1985
Footnotes
Work performed under CNR-JSPS Scientific Cooperation Programme, Contracts No. 83.00032.01 and No. 84.00227.01, and under MPI financial support.
References
[1]
Abrahams, J. (1983) A survey of recent progress on level crossing problems for random processes. Preprint.Google Scholar
[2]
Blake, I. F. and Lindsey, W. C. (1973) Level crossing problems for random processes. IEEE Trans. Information Theory IT-19, 295–315.Google Scholar
[3]
Darling, D. A. and Siegert, A. J. F. (1953) The first passage problem for a continuous Markov process. Ann. Math. Statist.
24, 624–639.Google Scholar
[4]
Durbin, J. (1971) Boundary crossing probabilities for the Brownian motion and Poisson processes and techniques for computing the power of the Kolmogorov–Smirnov test. J. Appl. Prob.
8, 431–453.Google Scholar
[5]
Erdélyi, A., Magnus, W., Oberhettinger, F. and Tricomi, F. G. (1953) Higher Transcendental Functions, Vol. II, McGraw Hill, New York.Google Scholar
[6]
Favella, L., Reineri, M. T., Ricciardi, L. M. and Sacerdote, L. (1982) First passage time problems and some related computational methods. Cybernetics and Systems
13, 95–128.CrossRefGoogle Scholar
[7]
Fortet, R. (1943) Les fonctions aléatoires du type de Markoff associées à certaines équations linéaires aux dérivées partielles du type parabolique. J. Math. Pures Appl.
22, 177–243.Google Scholar
[8]
Ricciardi, L. M. and Sato, S. (1983) A note on first passage time problems for Gaussian processes and varying boundaries. IEEE Trans. Information Theory IT-29, 454–457.Google Scholar
[9]
Ricciardi, L. M., Sacerdote, L. and Sato, S. (1984) On an integral equation for first-passage-time probability densities. J. Appl. Prob.
21, 302–314.Google Scholar
[10]
Siegert, A. J. F. (1951) On the first passage time probability problem. Phys. Rev.
81, 617–623.CrossRefGoogle Scholar
[11]
Stratonovich, R. L. (1963) Topics in the Theory of Random Noise, Vol. I. Gordon and Breach, New York.Google Scholar
- 13
- Cited by