Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T09:34:06.772Z Has data issue: false hasContentIssue false

Local risk minimization and numéraire

Published online by Cambridge University Press:  14 July 2016

F. Biagini*
Affiliation:
University of Bologna
M. Pratelli*
Affiliation:
University of Pisa
*
Postal address: Dipartimento di Matematica, Università di Bologna, Piazza di Porta, San Donato-40127, Bologna, Italy.
∗∗Postal address: Dipartimento di Matematica, Università di Pisa, via Buonarroti-56100, Pisa (PI), Italy. Email address: [email protected].

Abstract

The ‘change of numéraire’ technique has been introduced by Geman, El Karoui and Rochet for pricing and hedging contingent claims in the case of complete markets. In this paper we study the ‘change of numéraire’ using the ‘locally risk-minimizing approach’, when the market is not complete. We prove that, if the stochastic process which represents the prices is continuous, the l.r.m. strategy is invariant by a change of numéraire (this result is false in the right-continuous case, as is shown by some counterexamples).

We also give an extension of Merton's formula to the case of stochastic volatility.

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1999 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Björk, T. (1997). Interest rate theory. In Financial Mathematics, ed. Runggaldier, W. J. (Lecture Notes in Math. 1656). Springer, New York.CrossRefGoogle Scholar
Delbaen, F., and Schachermayer, W. (1995). The no-arbitrage property under a change of numéraire. Stochastics and Stochastic Reports 53, 213226.Google Scholar
Dellacherie, C., and Meyer, P. A. (1980). Probabilités et Potentiel B: Théorie des Martingales. Hermann, Paris.Google Scholar
Föllmer, H., and Schweizer, M. (1991). Hedging of contingent claims under incomplete information. In Applied Stochastic Analysis, eds. Davis, M. H. A. and Elliot, R. J. Gordon and Breach, New York, pp. 389414.Google Scholar
Föllmer, H., and Sondermann, D. (1986). Hedging of non-redundant contingent claims. In Contribution to Mathematical Economics, eds. Hildenbrand, W. and Mas-Colell, A. North-Holland, Amsterdam, pp. 205223.Google Scholar
Geman, H., El Karoui, N., and Rochet, J. C. (1995). Changes of numéraire, changes of probability measure and option pricing. J. Appl. Prob. 32, 443458.Google Scholar
Gouriéroux, L., Laurent, J. P., and Pham, H. (1998). Mean-variance hedging and numéraire. Math. Finance 8, 179200.CrossRefGoogle Scholar
Jacod, J. (1979). Calcul Stochastique et Problèmes des Martingales (Lecture Notes in Math. 714). Springer, New York.Google Scholar
Musiela, M., and Rutkowski, M. (1997). Martingale Methods in Financial Modelling. Springer, New York.Google Scholar
Protter, P. (1990). Stochastic Integration and Differential Equations: A New Approach. Springer, New York.Google Scholar
Schweizer, M. (1991). Option hedging for semimartingales. Stoch. Proc. Appl. 37, 339363.Google Scholar
Schweizer, M. (1994). Risk-minimizing hedging strategies under restricted information. Math. Finance 4, 327342.Google Scholar
Zhang, X. (1994). Analyse numérique des options américaines dans un modèle de diffusion avec des sauts. Thèse de Doctorat, École Nationale des Ponts et des Chaussés.Google Scholar