Article contents
A limit theorem for a class of supercritical branching processes
Published online by Cambridge University Press: 14 July 2016
Abstract
In the Bellman-Harris (B-H) age-dependent branching process, the birth of a child can occur only at the time of its parent's death. A general class of branching process in which births can occur throughout the lifetime of a parent has been introduced by Crump and Mode. This class shares with the B-H process the property that the generation sizes {ξn} form a Galton-Watson process, and so may be classified into subcritical, critical or supercritical according to the value of m = E{ξ1}. Crump and Mode showed that, as regards extinction probability, asymptotic behaviour, and for the supercritical case, convergence in mean square of Z(t)/E[Z(t)], as t → ∞, where Z(t) is the population size at time t given one ancestor at t = 0, properties of the B-H process can be extended to this general class. In this paper conditions are found for the convergence in distribution of Z(t)/E{Z(t)} in the supercritical case to a non-degenerate limit distribution. In contrast to the B-H process, these conditions are not the same as those for ξn/mn to have a non-degenerate limit. An integral equation is established for the generating function of Z(t), which is more complicated than the corresponding one for the B-H process and involves the conditional probability generating functional of N(x), x 0, ≧ the number of children born to an individual in the age interval [0, x].
Keywords
- Type
- Research Papers
- Information
- Copyright
- Copyright © Applied Probability Trust 1972
References
- 41
- Cited by