Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T19:39:47.106Z Has data issue: false hasContentIssue false

First-passage-time densities for time-non-homogeneous diffusion processes

Published online by Cambridge University Press:  14 July 2016

R. Gutiérrez*
Affiliation:
University of Granada
L. M. Ricciardi*
Affiliation:
University of Naples
P. Román*
Affiliation:
University of Granada
F. Torres*
Affiliation:
University of Granada
*
Postal address: Departamento de Estadística e Investigación Operativa, Universidad de Granada, Avda. Fuentenueva s/n 18071, Granada, Spain.
∗∗Postal address: Dipartimento di Matematica e Applicazioni, Università di Napoli ‘Federico II', Via Cintia, 80126, Naples, Italy.
Postal address: Departamento de Estadística e Investigación Operativa, Universidad de Granada, Avda. Fuentenueva s/n 18071, Granada, Spain.
Postal address: Departamento de Estadística e Investigación Operativa, Universidad de Granada, Avda. Fuentenueva s/n 18071, Granada, Spain.

Abstract

In this paper we study a Volterra integral equation of the second kind, including two arbitrary continuous functions, in order to determine first-passage-time probability density functions through time-dependent boundaries for time-non-homogeneous one-dimensional diffusion processes with natural boundaries. These results generalize those which were obtained for time-homogeneous diffusion processes by Giorno et al. [3], and for some particular classes of time-non-homogeneous diffusion processes by Gutiérrez et al. [4], [5].

MSC classification

Type
Research Papers
Copyright
Copyright © Applied Probability Trust 1997 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Buonocore, A., Nobile, A.G. and Ricciardi, L. (1987) A new integral equation for the evaluation of first-passage-time probability densities. Adv. Appl. Prob. 19, 784800.Google Scholar
[2] Fortet, R. (1943) Les fonctions aléatoires du type de Markoff associées à certaines équations linéaires aux derivées partielles du type parabolique. J. Math. Pures Appl. 22, 177243.Google Scholar
[3] Giorno, V., Nobile, A. G., Ricciardi, L. and Sato, S. (1989) On the evaluation of first-passage-time probability densities via non singular integral equations. Adv. Appl. Prob. 21, 2036.Google Scholar
[4] Gutiérrez, R., Román, P. and Torres, F. (1994) A remark on the validity of the Volterra integral equation of first-passage-time densities for a class of time-non-homogeneous diffusion processes. In Proc. Twelfth European Meeting on Cybernetics and Systems Research, Vienna. pp. 847854.Google Scholar
[5] Gutiérrez, R., Román, P. and Torres, F. (1995) A note on the Volterra integral equation for the first-passage-time density. J. Appl. Prob. 32, 635648.Google Scholar
[6] Hull, J. and White, A. (1987) The pricing of option on assets with stochastic volatility. J. Finance 42, 281300.CrossRefGoogle Scholar
[7] Nobile, A.G. and Ricciardi, L. (1980) Growth and extinction in random environment. In Applications on Information and Control Systems. ed. Lainiotis, D. G. and Tzannes, N. S. Reidel, Dordrecht. pp. 455465.Google Scholar
[8] Smith, J. A. and De Veaux, R. (1992) The temporal and spatial variability of rainfall power. Environmetrics 3, 2953.Google Scholar
[9] Tintner, G. and Sengupta, J. K. (1972) Stochastic Economics. Academic Press, New York.CrossRefGoogle Scholar