Published online by Cambridge University Press: 14 July 2016
The use of taboo probabilities in Markov chains simplifies the task of calculating the queue-length distribution from data recording customer departure times and service commencement times such as might be available from automatic bank-teller machine transaction records or the output of telecommunication network nodes. For the case of Poisson arrivals, this permits the construction of a new simple exact O(n3) algorithm for busy periods with n customers and an O(n2 log n) algorithm which is empirically verified to be within any prespecified accuracy of the exact algorithm. The algorithm is extended to the case of Erlang-k interarrival times, and can also cope with finite buffers and the real-time estimates problem when the arrival rate is known.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.