No CrossRef data available.
Article contents
Expected measure of the union of random rectangles
Published online by Cambridge University Press: 14 July 2016
Abstract
An asymptotic expression for the expected area of the union of n random rectangles is derived by Mellin transforms, where their two diagonal corners are independently and uniformly distributed over (0,1)2. The general result for d-dimensional hyper-rectangles is also stated.
Keywords
MSC classification
- Type
- Short Communications
- Information
- Copyright
- Copyright © Applied Probability Trust 1998
References
Buchta, C. (1989). On the average number of maxima in a set of vectors. Inform. Process. Lett.
33, 63–65.CrossRefGoogle Scholar
Buchta, C., Müller, J., and Tichy, R.F. (1985). Stochastic approximation of convex bodies. Math. Ann.
271, 225–235.CrossRefGoogle Scholar
Efron, B. (1965). The convex hull of a random set of points. Biometrika
52, 331–343.CrossRefGoogle Scholar
Erdélyi, A. (1985). Higher Transcendental Functions, Volume I. Robert E. Krieger Publishing Company, Malabar, Florida. Original edition, 1953.Google Scholar
Feller, W. (1971). An Introduction to Probability Theory and its Applications, Volume II. John Wiley & Sons, New York.Google Scholar
Flajolet, P., and Sedgewick, R. (1995). Mellin transforms and asymptotics: finite differences and Rice's integrals. Theoret. Comput. Sci.
144, 101–124.CrossRefGoogle Scholar
Groeneboom, P. (1988). Limit theorems for convex hulls. Prob. Theory Rel. Fields
79, 327–368.CrossRefGoogle Scholar
Hsing, T. (1994). On the asymptotic distribution of the area outside a random convex hull in a disk. Ann. Appl. Prob.
4, 478–493.CrossRefGoogle Scholar
Klee, V. (1977). Can the measure of ∪[ai,bi
] be computed in less than O(n log n) steps. Amer. Math. Monthly
84, 284–285.Google Scholar
Mead, C., and Conway, L. (1980). Introduction to VLSI-systems. Addison-Wesley, Reading, Mass.Google Scholar
Mehlhorn, K. (1984). Data Structures and Algorithms 3: Multi-dimensional Searching and Computational Geometry. Springer-Verlag, Berlin, New York.CrossRefGoogle Scholar
Preparata, F.P., and Shamos, M.I. (1985). Computational Geometry: An Introduction. Springer-Verlag, New York.CrossRefGoogle Scholar
Raynaud, H. (1970). Sur l'enveloppe convexe des nuages de point aléatoires dans R
n
. I. J. Appl. Prob.
7, 35–48.Google Scholar
Rényi, A., and Sulanke, R. (1963). Über die konvexe Hulle von n zufallig gewahlten Punkten. I. Z. Wahrscheinlichkeitsth.
2, 75–84.CrossRefGoogle Scholar
Rényi, A., and Sulanke, R. (1964). Über die konvexe Hulle von n zufallig gewahlten Punkten. II. Z. Wahrscheinlichkeitsth.
3, 138–148.CrossRefGoogle Scholar