Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-11T09:52:55.188Z Has data issue: false hasContentIssue false

Branching Brownian motion with spatially homogeneous and point-catalytic branching

Published online by Cambridge University Press:  01 October 2019

Sergey Bocharov*
Affiliation:
Zhejiang University
Li Wang*
Affiliation:
Beijing University of Chemical Technology
*
*Postal address: Department of Mathematics, Zhejiang University, Zheda Road, Hangzhou 310027, China. Email address: [email protected]
**Postal address: School of Sciences, Beijing University of Chemical Technology, Beijing, China. Email address: [email protected]

Abstract

We consider a model of branching Brownian motion in which the usual spatially homogeneous branching and catalytic branching at a single point are simultaneously present. We establish the almost sure growth rates of population in certain time-dependent regions and as a consequence the first-order asymptotic behaviour of the rightmost particle.

Type
Research Papers
Copyright
© Applied Probability Trust 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bocharov, S. and Harris, S. C. (2014). Branching Brownian motion with catalytic branching at the origin. Acta Appl. Math. 134 (1), 201228.CrossRefGoogle Scholar
Borodin, A. N. and Salminen, P. (2002). Handbook of Brownian Motion: Facts and Formulae. Birkhäuser, Basel.CrossRefGoogle Scholar
Bramson, M. D. (1978). Maximal displacement of branching Brownian motion. Commun. Pure Appl. Math. 31, 531581.CrossRefGoogle Scholar
Bulinskaya, E. (2017). Spread of a catalytic branching random walk on a multidimensional lattice. Stoch. Proc. Appl. 128 (7), 23252340.CrossRefGoogle Scholar
Carmona, P. and Hu, Y. (2014). The spread of a catalytic branching random walk. Ann. Inst. Henri Poincaré Probab. Stat. 50, 327351.CrossRefGoogle Scholar
Dawson, D. A. and Fleischmann, K. (1994). A super-Brownian motion with a single point catalyst. Stoch. Proc. Appl. 49 (1), 340.CrossRefGoogle Scholar
Durrett, R. (1996). Probability: Theory and Examples, 2nd edn. Duxbury, N. Scituate, MA.Google Scholar
Englander, J. and Turaev, D. (2002). A scaling limit theorem for a class of superdiffusions. Ann. Prob. 30 (2), 683722.Google Scholar
Hardy, R. and Harris, S. C. (2009). A spine approach to branching diffusions with applications to ${L_p}$ -convergence of martingales. In Séminaire de Probabilités XLII (Lecture Notes in Mathematics 1979), pp. 281330. Springer, Berlin.CrossRefGoogle Scholar
Harris, J. W. and Harris, S. C. (2009). Branching Brownian motion in an inhomogeneous breeding potential. Ann. Inst. Henri Poincaré Probab. Stat. 45 (3), 793801.CrossRefGoogle Scholar
Harris, S. C. and Roberts, M. (2017). The many-to-few lemma and multiple spines. Ann. Inst. Henri Poincaré Probab. Stat. 53 (1), 226242.CrossRefGoogle Scholar
Karatzas, I. and Shreve, S. E. (1984). Trivariate density of Brownian motion, its local time and occupation times, with application to stochastic control. Ann. Prob. 12, 819828.CrossRefGoogle Scholar
Klenke, A. (1999). A review on spatial catalytic branching. In Stochastic Models: A Conference in Honor of Don Dawson (Conference Proceedings, Canadian Mathematical Society 26), eds Gorostiza, L. and Ivanoff, G., pp. 245–264. American Mathematical Society.Google Scholar
Kyprianou, A. E. (2004). Travelling wave solutions to the K-P-P equation: alternatives to Simon Harris’ probabilistic analysis. Ann. Inst. Henri Poincaré Probab. Stat. 40, 5372.CrossRefGoogle Scholar
Lalley, S. P. and Sellke, T. (1987). A conditional limit theorem for the frontier of a branching Brownian motion. Ann. Prob. 15 (3), 10521061.CrossRefGoogle Scholar
Liu, R.-L., Ren, Y.-X. and Song, R. (2011). ${L\log L}$ condition for super branching Hunt processes. J. Theoret. Probab. 24 (1), 170193.CrossRefGoogle Scholar
Lyons, R. (1997). A simple path to Biggins’ martingale convergence for branching random walk. Classical and Modern Branching Processes (IMA Vol. Math. Appl. 84), pp. 217221. Springer, New York.CrossRefGoogle Scholar
McKean, H. P. (1975). Application of Brownian motion to the equation of Kolmogorov–Petrovskii–Piscounov. Commun. Pure Appl. Math. 28, 323331.CrossRefGoogle Scholar
Roberts, M. I. (2013). A simple path to asymptotics for the frontier of a branching Brownian motion. Ann. Prob. 41, 35183541.CrossRefGoogle Scholar