Published online by Cambridge University Press: 14 July 2016
In recent publications of Hadwiger, Bokowski, and Wills it has been shown that it is possible to evaluate the average distance between a fixed and a randomly distributed convex set in terms of the mean projection measures of these sets. In the present note it is pointed out that these and more general results can be obtained from a theorem concerning the relationship between integrals over arbitrary measure spaces and corresponding Lebesgue–Stieltjes integrals.
Research supported by National Science Foundation Grant MCS 76–06111.